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2.2  Optimal cost spanning trees

Spanning trees have a number of applications:

• network design (communication, electrical,...)
• IP network protocols
• compact memory storage (DNA)
•...
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Model:  Graph G = (N, E) with n = |N|, m = |E| and 
a cost function c : E  ce  R, with e = [v,w]  E.

Example Design a communication network so as to connect n cities
at minimum total cost.

2.2.1  Minimum cost spanning tree problem
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1) Each pair of cities must communicate  connected subgraph
containing all the nodes. 

2) Minimum total cost  subgraph with no cycles.

Problem Given an undirected graph G = (N, E) and a cost 
function, find a spanning tree of minimum total cost

min e
e TT X

c



where X is the set of all 
spanning trees of G

Required properties:
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Some feasible solutions:
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Theorem (A. Cayley 1889)

A complete graph with n nodes (n  1) has nn-2 spanning trees.

Recall:  A tree with n nodes has n – 1 edges. 

K5 (n=5, m=10) has 125 spanning trees

Examples:  K3 (n=3, m=3 edges) has 3 spanning trees
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2.2.2  Prim’s algorithm

Idea: Iteratively build a spanning tree.

Start from tree (S, T) where S contains an arbitrary node and T=.

At each step, add to the current partial tree (S, T) an edge of minimum
cost among those which connect a node in S to a node in N \S.
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S = {1, 2}

41 21
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Given G =(N,E) with edge costs 
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Procedure:
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BEGIN

S:={1}; T:= ; 

WHILE |T| < n-1 DO /* a tree with n nodes has n-1 edges */

Select an edge [v,h]  (S) of minimum cost (v  S and h  N \ S);

T := T  {[v,h]};

S := S  {h};

END-WHILE 

END

Input Connected G = (N, E) with edge costs

Output
Subset of edges T  E such that GT = (N, T) is a 
spanning tree of G

Pseudocode of Prim’s algorithm

If all edges are scanned at each iteration, complexity:  O(nm) 
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2.2.3  Exactness of Prim’s algorithm

Definition: An algorithm is exact if it provides an optimal solution
for every instance, otherwise it is heuristic.

Come vedremo l’esattezza non dipende dalla scelta del 
primo nodo o del lato di costo minimo selezionato in (S).

Proposition:  Prim’s algorithm is exact.

As we shall see, exactness does not depend on the choice of the first node or 
of the selected edge of minimum cost in (S).

We show that each selected edge belongs to a minimum spanning tree. 
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Cut property

Proof

v
h

e

f

Adding edge e creates the cycle C.

If ce=cf then T*  {e} \ {f} is (also) 
optimal since it has same cost of T*.

If ce< cf then c(T*  {e} \ {f}) < c(T*),  
hence T* is not optimal.

Let  f  (S)  C.
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Let F be a partial tree (spanning nodes in S  N) contained in an
optimal tree of G. Consider e=[v,h]  (S) of minimun cost, then there
exists a minimum cost spanning tree of G containing e.

By contradiction:              Let T* E be a minimum cost spanning tree  
with F  T* and e  T*.

S

C

T*

F
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At each step a minimum cost edge is selected among those in the cut
(S) induced by the current set of nodes S.

Observation: Prim’s algorithm is a greedy algorithm. 

N.B. For most discrete optimization problems greedy-type algorithms
yield a feasible solution with no guarantee of optimality.

Definition: A greedy algorithm constructs a feasible solution
iteratively by making at each step a “locally optimal” choice, without
reconsidering previous choices. “localmente



Various greedy algorithms for the minimum cost spanning tree
problem are based on the cut property:

• Boruvka (1926)
• Kruskal (1956)   -- Exercise 2.2
• Prim (1957)
• …

E. Amaldi  – Foundations of Operations Research – Politecnico Milano 13



14

• Subset S  N of nodes incident to the selected edges

2.2.4  O(n2) version of Prim’s algorithm

• Subset T  E of selected edges 
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• closest[j] = 
argmin {cij : i  S},  for  j  S

“predecessor” of  j in the min spanning tree, for  j  S

closest[j]=3
S

j  S
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c[closest[j],j]=2



Pseudocode      

BEGIN

S := {1}; T := ;     
FOR EACH j  S DO

closest[j] := 1;  

END-FOR

WHILE |T| < n-1 DO /* select n – 1 edges of the tree */

Find h  S such that [closest[h],h]  (S) is of minimum cost;        

S := S  {h}; T := T  {[closest[h],h]};    

FOR EACH j  S DO /* update closest[j] */

IF (chj < c[[closest[j],j]) THEN closest[j]:= h; END-IF
END-FOR

END-WHILE

END
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Example
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S = {1} T = 

closest = (1, 1, 1, 1, 1)
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S = {1, 2}
T ={[1,2]}

closest = (1, 1, 2, 1, 1)

etc...
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S = {1, 2, 5}

T = {[1,2], [1,5]}

closest = (1, 1, 5, 5, 1)

since  c23 < c13 closest[3]:=2
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BEGIN

initialization

FOR EACH j  S DO

... END-FOR

WHILE |T| < n-1 DO

... 

FOR EACH j  S DO

... END-FOR

END-FOR

END

Complexity

initialization requires O(n)1 1

2

2 The external cycle is 
executed  n - 1 times

3 The internal FOR cycle 
requires O(n)

3

Overall complexity: O(n2)
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For sparse graphs, where  m  n(n-1)/2, a more sophisticated 
data structure leads to an O(m log n) complexity.
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The minimum spanning tree found by Prim’s algorithm consists of 
the n-1 edges:   [ closest[j],  j ]  with  j = 2,..., n.

Example:  Since  closest =(1,1,5,5,1) a spanning tree consists 
of the edges:[1,2], [5,3], [5,4] and [1,5].

total cost: 9
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How to retrive the spanning tree from closest? 
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Definition: Given a spanning tree T, an edge e  T is cost 
decreasing if when e is added to T it creates a cycle C with C
 T  {e} and   an edge f  C \ {e} such that ce < cf .

'
'c  (T {e }  \ { f}  )  <  c (T ) =  

e T
ec



 

C

T

e

2.2.5 Optimality condition

f
ce < cf
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Tree optimality condition

A tree T is of minimum total cost if and only if no cost-decreasing edge
exists.
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Tf

because the cost of T could be decreased by exchanging the cost-
decreasing edge e with any  f  of  C with ce < cf .

ece cf 
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Proof () If a cost-decreasing edge exists, T is not of minimum total 
cost. 
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() If no cost-decreasing edge exists, then T is of minimum total cost.
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It can be verified  that, by exchanging one edge at a time, T* can be 
iteratively transformed into T without modifying the total cost.

Let  T* be a minimum cost spanning tree found by Prim’s algorithm.

Thus T is also optimal.
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The optimality condition allows us to verify whether a given spanning 
tree GT is optimum:

It suffices to check that each e  E \ T is not a cost-decreasing edge.
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Optimality test
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Given a communication network G = (N, E),  we want to broadcast a 
secret message to all the nodes so that it is not intercepted along any
edge.

Let pij, 0  pij  1, be the probability the message is intercepted along 
edge [i, j]  E.

How to broadcast the message to all the nodes of G so as 
to minimize the probability of interception along any edge? 

Problem

2.2.6  An indirect application: optimal message passing
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Minimize the probability of interception (along any edge)

Maximize the probability of non-interception



T is a spanning 
tree

• Broadcasting to all nodes  connected

• acyclic to avoid redundancy and a higher 
probability of interception 

[ , ]

max (1 )ij
i j T

p



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By applying a montone increasing function like log(.), the optimal 
solutions remain unchanged  ( only the solution values change )



[ , ] [ , ]

max log( (1 )) max log(1 )ij ij
i j T i j T

p p
 

   

Solved by a straightforward 
adaptation of any minimum 
cost spanning tree algorithm 
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