2.2 Optimal cost spanning trees

Spanning trees have a number of applications:

- network design (communication, electrical,...)
- IP network protocols

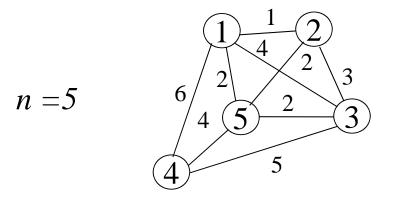
•...

• compact memory storage (DNA)

2.2.1 <u>Minimum cost spanning tree problem</u>

Example

Design a communication network so as to connect *n* cities at <u>minimum total cost</u>.



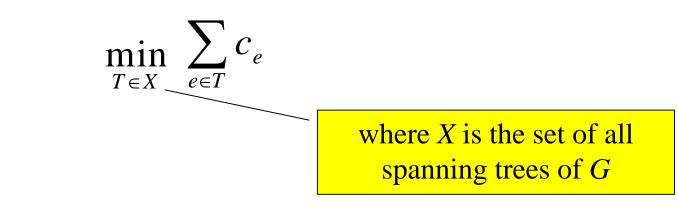
<u>Model</u>: Graph G = (N, E) with n = |N|, m = |E| and a <u>cost function</u> $c : E \to c_e \in \mathbb{R}$, with $e = [v,w] \in E$.

E. Amaldi - Foundations of Operations Research - Politecnico Milano

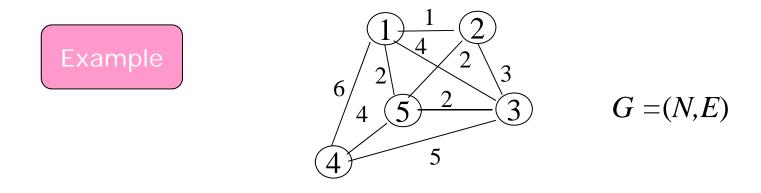
Required properties:

- 1) Each pair of cities must communicate \Rightarrow connected subgraph containing all the nodes.
- 2) Minimum total cost \Rightarrow subgraph with no cycles.

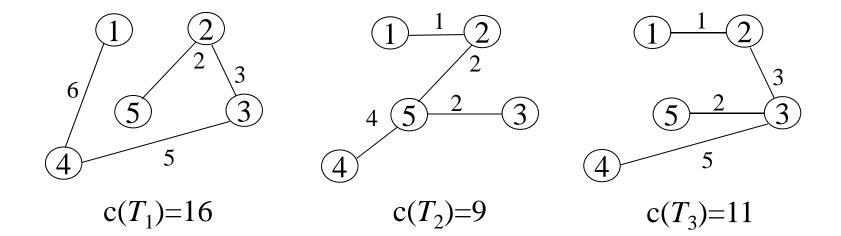
Given an undirected graph G = (N, E) and a cost function, find a <u>spanning tree</u> of minimum total cost



E. Amaldi – Foundations of Operations Research – Politecnico Milano



Some feasible solutions:



E. Amaldi – Foundations of Operations Research – Politecnico Milano

(A. Cayley 1889)

A complete graph with *n* nodes $(n \ge 1)$ has n^{n-2} spanning trees.

Examples: K_3 (n=3, m=3 edges) has 3 spanning trees

 K_5 (*n*=5, *m*=10) has 125 spanning trees

<u>**Recall</u>: A tree with** *n* **nodes has n - 1 edges.</u>**

E. Amaldi – Foundations of Operations Research – Politecnico Milano

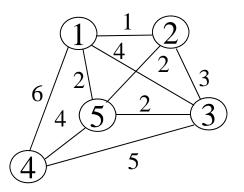
2.2.2 Prim's algorithm

Idea: Iteratively build a spanning tree.

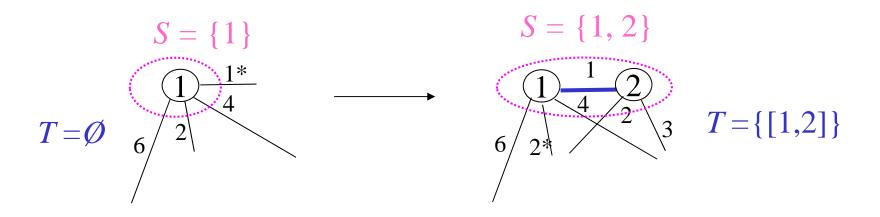
Start from tree (*S*, *T*) where *S* contains an arbitrary node and $T=\emptyset$.

At each step, add to the current partial tree (*S*, *T*) an edge of minimum cost among those which connect a node in *S* to a node in $N \setminus S$.

Given G = (N, E) with edge costs



Procedure:





E. Amaldi – Foundations of Operations Research – Politecnico Milano

Pseudocode of Prim's algorithm

<u>Connected</u> G = (N, E) with edge costs

Subset of edges $T \subseteq E$ such that $G_T = (N, T)$ is a spanning tree of G

BEGIN

```
\begin{split} &S:=\{1\}; \ T:= \oslash; \\ & \text{WHILE } |T| < n-1 \ \text{DO} \quad /* \text{ a tree with } n \text{ nodes has } n-1 \text{ edges } */ \\ & \text{Select an edge } [v,h] \in \delta(S) \text{ of minimum cost } (v \in S \text{ and } h \in N \setminus S); \\ & T := T \cup \{[v,h]\}; \\ & S := S \cup \{h\}; \\ & \text{END-WHILE} \\ & \text{END} \end{split}
```

If all edges are scanned at each iteration, complexity: O(nm)

E. Amaldi – Foundations of Operations Research – Politecnico Milano

2.2.3 Exactness of Prim's algorithm

Definition: An algorithm is <u>exact</u> if it provides an optimal solution for every instance, otherwise it is <u>heuristic</u>.

Proposition: Prim's algorithm is exact.

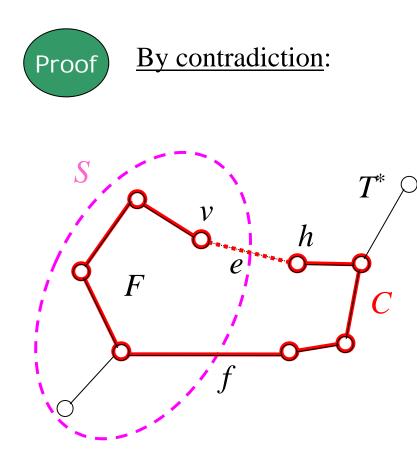
We show that each selected edge belongs to a minimum spanning tree.

As we shall see, exactness does not depend on the choice of the first node or of the selected edge of minimum cost in $\delta(S)$.

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Cut property

Let *F* be a partial tree (spanning nodes in $S \subseteq N$) contained in an optimal tree of *G*. Consider $e=[v,h] \in \delta(S)$ of minimum cost, then there exists a minimum cost spanning tree of *G* containing *e*.



Let $T^* \subseteq E$ be a minimum cost spanning tree with $F \subseteq T^*$ and $e \notin T^*$.

Adding edge *e* creates the cycle *C*.

Let $f \in \delta(S) \cap C$.

If $c_e = c_f$ then $T^* \cup \{e\} \setminus \{f\}$ is (also) optimal since it has same cost of T^* .

If $c_e < c_f$ then $c(T^* \cup \{e\} \setminus \{f\}) < c(T^*)$, hence T^* is not optimal.

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Definition: A *greedy algorithm* constructs a feasible solution iteratively by making at each step a "locally optimal" choice, without reconsidering previous choices.

Observation: Prim's algorithm is a greedy algorithm.

At each step a minimum cost edge is selected among those in the cut $\delta(S)$ induced by the current set of nodes *S*.

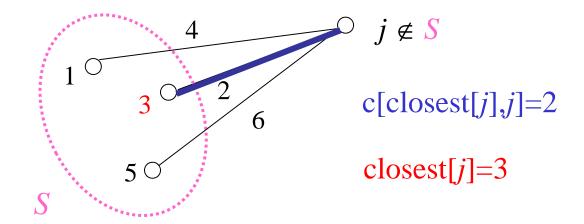
N.B. For most discrete optimization problems greedy-type algorithms yield a feasible solution with no guarantee of optimality.

Various greedy algorithms for the minimum cost spanning tree problem are based on the cut property:

- Boruvka (1926)
- Kruskal (1956) -- Exercise 2.2
- Prim (1957)
- ...

2.2.4 <u> $O(n^2)$ version of Prim's algorithm</u>

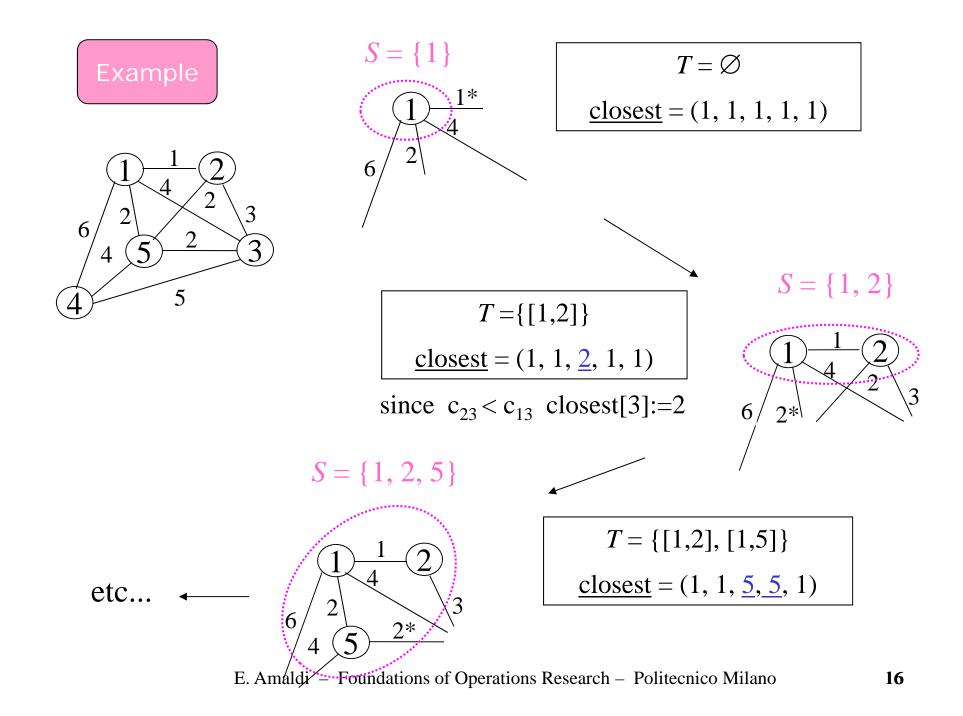
- Subset $T \subseteq E$ of selected edges
- Subset $S \subseteq N$ of nodes incident to the selected edges



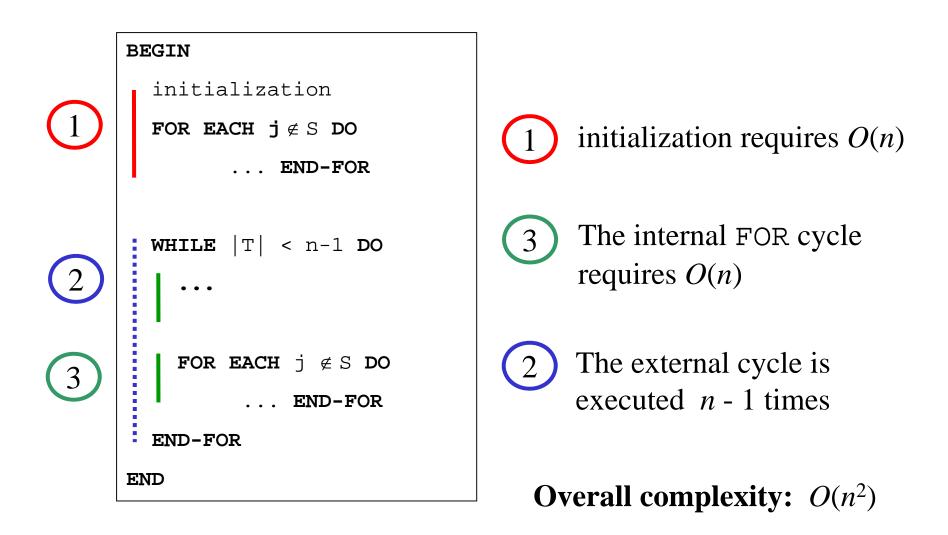
• closest[j] = $\begin{cases} \text{argmin } \{c_{ij} : i \in S\}, \text{ for } j \notin S \\ \text{"predecessor" of } j \text{ in the min spanning tree, for } j \in S \end{cases}$

Pseudocode

```
BEGIN
 S := {1}; T := \emptyset;
 FOR EACH j \notin S DO
     closest[j] := 1;
 END-FOR
        |T| < n-1 DO /* select n - 1 edges of the tree */
 WHILE
   Find h \notin S such that [closest[h], h] \in \delta(S) is of minimum cost;
   S := S \cup \{h\}; T := T \cup \{[closest[h], h]\};
   FOR EACH j ∉ S DO /* update closest[j] */
     IF (c_{hj} < c[[closest[j],j]]) THEN closest[j]:=h; END-IF
   END-FOR
 END-WHILE
END
```



Complexity

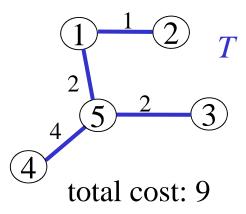


For sparse graphs, where $m \ll n(n-1)/2$, a more sophisticated data structure leads to an $O(m \log n)$ complexity.

How to retrive the spanning tree from <u>closest</u>?

The minimum spanning tree found by Prim's algorithm consists of the *n*-1 edges: [closest[*j*], *j*] with j = 2,..., n.

<u>Example</u>: Since $\underline{closest} = (1,1,5,5,1)$ a spanning tree consists of the edges: [1,2], [5,3], [5,4] and [1,5].



E. Amaldi – Foundations of Operations Research – Politecnico Milano

2.2.5 Optimality condition

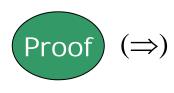
Definition: Given a spanning tree *T*, an <u>edge</u> $e \notin T$ is <u>cost</u> <u>decreasing</u> if when *e* is added to *T* it creates a cycle *C* with *C* $\subseteq T \cup \{e\}$ and \exists an edge $f \in C \setminus \{e\}$ such that $c_e < c_f$.



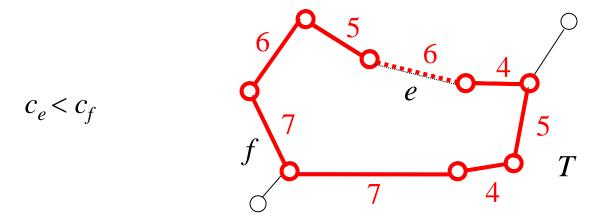
E. Amaldi – Foundations of Operations Research – Politecnico Milano

Tree optimality condition

A tree *T* is of <u>minimum</u> total cost **if and only if** <u>no cost-decreasing edge</u> exists.



If a cost-decreasing edge exists, *T* is not of minimum total cost.



because the cost of *T* could be decreased by exchanging the costdecreasing edge *e* with any *f* of *C* with $c_e < c_f$.

E. Amaldi – Foundations of Operations Research – Politecnico Milano

(\Leftarrow) If no cost-decreasing edge exists, then *T* is of minimum total cost.

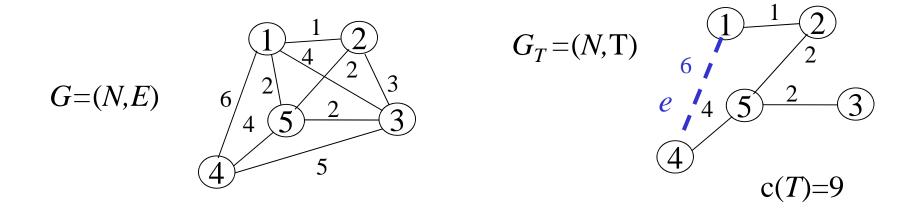
Let T^* be a minimum cost spanning tree found by Prim's algorithm.

It can be verified that, by exchanging one edge at a time, T^* can be iteratively transformed into T without modifying the total cost.

Thus *T* is also optimal.

Optimality test

The optimality condition allows us to <u>verify</u> whether a given <u>spanning</u> <u>tree</u> G_T is <u>optimum</u>:



It suffices to check that each $e \in E \setminus T$ is not a cost-decreasing edge.

E. Amaldi – Foundations of Operations Research – Politecnico Milano

2.2.6 An indirect application: optimal message passing

Given a communication network G = (N, E), we want to broadcast a secret message to all the nodes so that it is not intercepted along *any* edge.

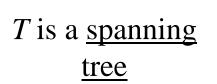
Let p_{ij} , $0 \le p_{ij} \le 1$, be the probability the message is intercepted along edge $[i, j] \in E$.

How to broadcast the message to all the nodes of *G* so as to minimize the probability of interception along any edge?

Minimize the probability of interception (along any edge)

Maximize the probability of non-interception

$$\max \prod_{[i,j]\in T} (1-p_{ij})$$



- $T \text{ is a <u>spanning</u>} \underbrace{\text{tree}} \left\{ \begin{array}{l} \bullet \text{ Broadcasting to all nodes} \Rightarrow \underline{\text{connected}} \\ \bullet \underline{\text{acyclic}} \text{ to avoid redundancy and a higher} \\ \text{probability of interception} \end{array} \right.$

By applying a montone increasing function like log(.), the optimal solutions remain unchanged (only the solution values change)

