2.3.4 Optimal paths in directed acyclic graphs

Definition: A directed graph $G=(N, A)$ is $\underline{\text { acyclic if it contains no }}$ circuits. A directed acyclic graph is referred to as $\underline{D A G}$.

Given a directed acyclic $G=(N, A)$ with a cost $c_{i j} \in \mathbb{R}$ for each $(i, j) \in A$, and nodes s and t, determine a shortest (longest) path from s to t.

Property The nodes of any directed acyclic graph G can be ordered topologically, that is, indexed so that for each arc $(i, j) \in A$ we have $i<j$.

Topological order

Such a topological order can be exploited in a very efficient Dynamic Programming algorithm to find shortest (or longest) paths in directed acyclic graphs.

Topological ordering method

$G=(N, A)$ is represented via the lists of predecessors $\delta(v)$ and successors $\delta^{+}(v)$ for each node v

1. Assign the smallest positive integer not yet assigned to a node $v \in N$ with $\delta^{-}(v)=\varnothing$.
such a node v exists because G does not contain circuits

2. Delete the node v with all its incident arcs.
3. Go back to 1 . until there are nodes in the current subgraph.

Example

G

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Complexity: $O(m)$ where $m=|A|$
because each node and each arc is considered at most once.

Example

Given G and a topological order of the nodes, find a shortest path from node 1 to node 8 ?

Dynamic Programming for shortest paths in DAGs

Any shortest path $\left.\pi_{t}:(1) \cdots-\cdots\right)$ with at least two arcs can be subdivided into two parts π_{i} and (i,t):

where π_{i} : (1)--....-(i) is a shortest subpath from s to i.
Definition: For each node $i=1, \ldots, t$

$$
L(i)=\underline{\text { cost }} \text { of a shortest path from } 1 \text { to } i .
$$

Clearly

$$
L(t)=\min _{(i, t) \in \delta^{-}(t)}\left\{L(i)+c_{i t}\right\}
$$

where the minimum is taken over all possible predecessors i of t in a path from 1 to t.

If G is directed and acyclic and the nodes are topologically ordered, the only possible predecessors of t in a shortest path π_{t} from 1 to t are those with index $i<t$ and hence:

$$
L(t)=\min _{i<t}\left\{L(i)+c_{i t}\right\}
$$

Observation: In a graph containing circuits, any node different from t can be a predecessor of t in π_{t} !

For DAGs whose nodes are topologically ordered
$L(t-1), \ldots$. and $L(1)$ satisfy the same type of recursive relations:

$$
\begin{aligned}
L(t-1) & =\min _{i<t-1}\left\{L(i)+c_{i(t-1)}\right\} \\
& \vdots \\
L(2) & =\min _{i=1}\left\{L(i)+c_{i 2}\right\}=L(1)+c_{12} \\
L(1) & =0
\end{aligned}
$$

which can be solved in the reverse order:

$$
\begin{aligned}
L(1) & =0 \\
L(2) & =L(1)+c_{12} \\
& \vdots \\
L(t) & =\min _{i<t}\left\{L(i)+c_{i t}\right\}
\end{aligned}
$$

Example $L(1)=0$
pred(1)=1

$$
\begin{array}{ll}
L(2)=L(1)+c_{12}=0+4=4 & \text { pred }(2)=1 \\
L(3)=L(1)+c_{13}=0+2=2 & \text { pred(3)=1 }
\end{array}
$$

$$
L(4)=\min _{i=1,2,3}\left\{L(i)+c_{i 4}\right\}=\min \{0+5,4+3,2+1\}=3 \quad \operatorname{pred}(4)=3
$$

G

[.] indicates the predecessor of node i in a shortest path from 1 to i

$$
\begin{array}{ll}
L(5)=\min _{i=1,2}\left\{L(i)+c_{i 5}\right\}=\min \{0+12,4+1\}=5 & \operatorname{pred}(5)=2 \\
L(6)=\min _{i=3}\left\{L(i)+c_{i 6}\right\}=\min \{2+11\}=13 & \operatorname{pred}(6)=3 \\
L(7)=L(5)+c_{57}=5+6=11 & \operatorname{pred}(7)=5 \\
L(8)=\min _{i=4,5,6,7}\left\{L(i)+c_{i 8}\right\}=\min \{3+13,5+9,13+8,11+7\}=14
\end{array}
$$

\longrightarrow shortest path from 1 to 8 of total cost 14
E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Complexity DP for shortest paths in DAGs

```
BEGIN
    Sort the nodes of G topologically;
    L[1] := 0;
    FOR j:=2 TO n DO /* in topological order */
        L[j] := min {L[i] + c cij : (i,j) \in ('(j), i < j};
        pred[j] := v with
        (v,j) = argmin {L[i] + c cij : (i,j) \in ('(j), i < j};
    END-FOR
END
```

- Topological ordering of the nodes: $O(m)$ with $m=|A|$
- Each node and arc are considered exactly once: O($n+m$)

Overall complexity: $O(m)$

Adaptation of DP for longest paths in DAGs

Straightforward adaptation of the Dynamic Programming method to find longest paths in directed acyclic graphs:

$$
L(\mathrm{t})=\max _{i<t}\left\{L(i)+c_{i t}\right\} \ldots
$$

Proposition: The Dynamic Programming algorithm for finding shortest (longest) paths in DAGs is exact.

This is due to:

Optimality principle

For any shortest (longest) path $\pi_{j}:(1) \cdots \cdots \rightarrow$ (i) there exists $i<j$ such that we have the decomposition:

where the subpath $\pi_{i}:$ (1) $\rightarrow-\cdots$ (i) is of minimum (maximum) length from s to i.

Dynamic Programming (DP)

Proposed in 1953 by Richard Bellman (1920-1984)

General technique in which an optimal solution, composed of a sequence of elementary decisions, is determined by solving a set of recursive equations.
DP is applicable to any "sequential decision problem" for which the optimality property is satisfied.

A wide range of applications: optimal control (rocket launch), equipment maintenance and replacement, selection of inspection points along a production line,...

Exercise

A company buys a new machine for $12 \mathrm{~K} €$.
Annual maintenance costs for the next five years:

Age (years)	Maintenance (K€)	Recover (K€)
0	2	-
1	4	7
2	5	6
3	9	2
4	12	1

To avoid high maintenance costs of an older machine, the machine can be replaced at the beginning of the $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ or $5^{\text {th }}$ year with a new machine.

To simplify the model, suppose that the cost of a new machine is constant ($12 \mathrm{~K} €$).

Objective: minimize the net total cost (price + maintenance - recover) over the 5 year horizon.

Age	Main.	Reco.
0	2	-
1	4	7
2	5	6
3	9	2
4	12	1

If we buy a machine at beginning of $\underline{1}^{\text {st }}$ year and sell it at the beginning of $\underline{2}^{\text {nd }}$ year, the net cost is: $12+2-7=7$

If we buy it at the beginning of 1st year and sell it at the beginning of 3rd year, the net cost is: $12+2+4-6=12$ etc...

Show how the problem of determining an optimal maintenance replacement policy of minimum total cost (for the next 5 years) can be solved via Dynamic Programming.

Hint: Reduce it to a minimum cost path problem in an appropriate acyclic graph.

Find all the optimal maintenance-replacement policies.

