2.3 <u>Optimal paths</u>

Optimal (shortest or longest) paths have a wide range of applications:

- Google maps, GPS navigators
- planning and management of transportation, electrical and telecommunication networks
- project planning
- VLSI design
- subproblems of more complex problems
- ...

2.3.1 Shortest path problem

Given a directed graph G = (N, A) with a cost $c_{ij} \in \mathbb{R}$ for each arc $(i, j) \in A$, and two nodes *s* and *t*, determine a <u>minimum cost</u> (shortest) <u>path</u> from *s* to *t*.

 c_{ij} represents the cost (length, travel time,...) of arc $(i, j) \in A$

2.3.2 Dijkstra's algorithm

Edsger Dijkstra (1930-2002)

Definition: A path $(i_1, i_2), (i_2, i_3), \dots, (i_{k-1}, i_k)$ is <u>simple</u> if $i_u \neq i_v$ for all $u \neq v$ (a node is visited at most once) i_1 i_k

Property: If $c_{ij} \ge 0$ for all $(i, j) \in A$, every shortest path is simple.

input
$$G = (N, A)$$
 with $n = |N|$ and $m = |A|$, a node $s \in N$,
 $c_{ij} \ge \underline{0} \quad \forall (i, j) \in A \text{ with } c_{ij} = +\infty \text{ if } (i, j) \notin A$

output

Shortest paths from s to <u>all other nodes</u> of G

Idea: Consider the nodes in order of increasing cost of the shortest path from *s* to any one of the other nodes.

To each node $j \in N$, we assign a <u>label</u> L[j] which corresponds, at the end of the algorithm, to the <u>cost</u> of a <u>minimum cost path</u> from *s* to *j*.

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

<u>Two labels</u> associated with each node *j* in *S*: [L[*j*], pred[*j*]] where L[*j*] = cost of a shortest path from *s* to *j*, pred[*j*] = "predecessor" of *j* in the shortest path from *s* to *j*

A set of shortest path from *s* to every other node *j* can be retrieved backwards: pred[j], pred[pred[j]],..., *s*

Dijkstra's algorithm

Data structure

. . .

• $S \subseteq N$ subset of nodes whose <u>labels</u> are <u>final</u>

• $L[j] = \begin{cases} \frac{\text{cost of a shortest path from } s \text{ to } j, & \forall j \in S \\ \\ \min\{L[i] + c_{ij} : (i,j) \in \delta^+(S)\}, & \forall j \notin S \end{cases}$

Given a directed graph *G* and the current subset of nodes $S \subset N$, consider the "outgoing" cut $\delta^+(S)$ and select $(v,h) \in \delta^+(S)$ such that:

$$L[v] + c_{vh} = \min \{ L[i] + c_{ij} : (i, j) \in \delta^{+}(S) \}$$

thus $L[v] + C_{vh} \leq L[i] + C_{ij} \quad \forall (i,j) \in \delta^+(S)$

11

• pred[j] =
$$\begin{cases} \text{``predecessor''} \text{of } j \text{ in the shortest path from } s \text{ to } j \quad \forall j \in S \\ v \text{ such that } L[v] + c_{vj} = \min \{L[i] + c_{ij} : i \in S\} \quad \forall j \notin S \\ \text{with } c_{ij} = \infty \text{ if } (i,j) \notin A \end{cases}$$

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Pseudocode of Dijkstra's algorithm

$$G = (N, A), n = |N|, m = |A|, s \in N, c_{ij} \ge 0 \quad \forall (i, j) \in A$$

Shortest paths from *s* to <u>all the other nodes</u>

Complexity

Depends on how, at each iteration, the arc (v,h) is selected among those of the current outgoing cut $\delta^+(S)$.

If all *m* arcs are scanned and those that do not belong to $\delta^+(S)$ are discarded, the overall complexity would be O(nm), hence $O(n^3)$ for dense graphs.

If all labels L[j] are determined by appropriate updates (\approx Prim's algorithm), we need to consider a single arc of $\delta^+(S)$ for each node $j \notin S \Rightarrow$ overall **complexity** $O(n^2)$.

Proposition: Dijkstra's algorithm is exact.

ProofAt k-th step:
$$S = \{s, i_2, ..., i_k\}$$
 and $L[j] = \begin{cases} \frac{\text{cost of a minimum cost path from } s \text{ to } j, & \forall j \in S \\ \frac{\text{cost of a minimum cost path with all intermediate nodes in } S & \forall j \notin S \end{cases}$

By induction on the number *k* of steps :

- *inductive basis* : it is true for k = 1 since $S = \{s\}, L[s] = 0$ and $L[j] = c_{sj} \quad \forall j \neq s.$
- *inductive step* : if it is true at the *k*-th step, it is also true at the (*k*+1)-th step.

<u>(*k*+1)-th step</u>: Let $h \notin S$ be the node that is inserted in *S* and φ the path from *s* to *h* such that:

$$L[v] + c_{vh} \leq L[i] + c_{ij} \quad \forall (i,j) \in \delta^{+}(S).$$

Let us verify that every path π from *s* to *h* has $c(\pi) \ge c(\varphi)$.

A set of shortest paths from *s* to all the nodes *j* can be retrieved via the vector of predecessors.

17

Remarks

1) Taking the union of a set of shortest paths from node s to all the other nodes of G, we obtain an <u>arborescence</u> rooted at s.

Such arborescences, which are referred to as *shortest path trees*, have nothing to do with minimum cost spanning trees!

2) Dijkstra's algorithm is not applicable when there are arcs with negative cost c_{ij} .

Dijkstra's algorithm yields the path (1,3),(3,4) of cost 2, **but** path (1,2),(2,3),(3,4) has cost 1.

Due to $c_{23} < 0$ the last step in the exactness proof fails!

The minimum cost from 1 to 3 is not updated after the first step. According to a "greedy" choice on the arcs in $\delta^+(\{1\})$, it is taken as c_{13} which is "locally" optimal ($c_{13} < c_{12}$) even though the path (1,2),(2,3) has a strictly smaller cost because $c_{23} < 0$.

Exercise

Determine the shortest paths form node (0) to all the other nodes of the following graph:

2.3.3 Shortest path problem with negative costs

Observation: If the graph *G* contains a <u>circuit of negative cost</u>, the shortest path problem may not be well-defined.

Each time we go through the circuit, the cost decreases. There is no *finite* shortest path from *s* to *t*. Floyd-Warshall's algorithm allows to detect the presence of circuits with negative cost, and hence identify the cases in which the problem is ill-defined.

It provides a set of shortest paths between <u>all pairs of nodes</u>, even when there are arcs with <u>negative cost</u>.

It is based on iteratively applying a <u>triangular operation</u> described below.

Floyd-Warshall's algorithm

Directed graph G = (N, A) described via the $n \ge n \mod n$ matrix $C = [c_{ii}]$.

output For each pair of nodes $i, j \in N$, the cost d_{ij} of shortest path from *i* to *j*.

Data structure: two *n* x *n* matrices *D* and *P* whose elements correspond, at the end of the algorithm, to

- $d_{ii} = \underline{\text{cost}}$ of a <u>shortest path</u> from *i* to *j*
- $p_{ii} =$ <u>predecessor</u> of *j* in <u>shortest path</u> from *i* to *j*

Notation: from to , from to .

	1	2	3	4
1	0	3	2	8
2	8	0	6	-10
3	8	8	0	8
4	8	1	9	0

Example

D

For $(i, j) \in A$ set $d_{ij} = c_{ij}$, for loops $d_{ii} = 0$, and for $(i, j) \notin A$ set $d_{ij} = \infty$.

Р

The matrix of predecessors is initialized with $p_{ij} = i$, for all *i*.

Triangular operation with respect to node *h*:

For each pair of nodes *i*, *j*, with $i \neq h$ and $j \neq h$ (including case i=j), check whether when going from *i* to *j* it is more convenient to go via *h* : $d_{ih} + d_{hj} < d_{ij}$

<u>Cycle h=1</u>: Since there are no such arcs, the matrices *D* and *P* remain unchanged.

Cycle for *h*=1

skip
$$i = 1$$
 and $j = 1$

$0 = d_{22} < d_{21} + d_{12} = \infty + 3 = \infty$	n
$6 = d_{23} < d_{21} + d_{13} = \infty + 2 = \infty$	n
$-10 = d_{24} < d_{21} + d_{14} = \infty + \infty = \infty$	n
$8 = d_{32} < d_{31} + d_{12} = \infty + 3 = \infty$	n
$0 = d_{33} < d_{31} + d_{13} = \infty + 2 = \infty$	n
$\infty = d_{34} < d_{31} + d_{14} = \infty + \infty = \infty$	n
$1 = d_{42} < d_{41} + d_{12} = \infty + 3 = \infty$	n
$9 = d_{43} < d_{41} + d_{13} = \infty + 2 = \infty$	n
$0 = d_{44} < d_{41} + d_{14} = \infty + \infty = \infty$	n
E Amaldi Equindations of Operation	no Da

Р	\times	2	3	4
\times	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4

<u>Cycle for h=2</u>

skip
$$i = 2$$
 and $j = 2$

Pseudocode of Floyd-Warshall's algorithm

Proposition: Floyd-Warshall's algorithm is exact.

<u>Proof's idea</u>: Assume the nodes of *G* are numbered from *1* to *n*. Just verify that, if the node index order is followed, after the *h*-th cycle the value d_{ij} for any *i* and *j* corresponds to the cost of a shortest path from *i* to *j* with only intermediate nodes in $\{1, ..., h\}$.

Complexity

Since in the worst case the triangular operation is executed for all nodes h and for each pair of nodes i and j,

the overall complexity is $O(n^3)$.

Exercise

Find the shortest paths between every pair of nodes of the following graph:

