2.3 Optimal paths

Optimal (shortest or longest) paths have a wide range of applications:

- Google maps, GPS navigators
- planning and management of transportation, electrical and telecommunication networks
- project planning
- VLSI design
- subproblems of more complex problems
- ...

2.3.1 Shortest path problem

Problem Given a directed graph $G=(N, A)$ with a cost $c_{i j} \in \mathbb{R}$ for each arc $(i, j) \in A$, and two nodes s and t, determine a minimum cost (shortest) path from s to t.

$c_{i j}$ represents the cost (length, travel time, \ldots) of arc $(i, j) \in A$

2.3.2 Dijkstra's algorithm

Assumption $\quad c_{i j} \geq 0 \quad \forall(i, j) \in A$

Edsger Dijkstra (1930-2002)

Definition: A path $\left(\mathrm{i}_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{k-1}, i_{k}\right)$ is simple if

$$
\mathrm{i}_{u} \neq \mathrm{i}_{v} \text { for all } u \neq v
$$

(a node is visited at most once)

Property: If $c_{i j} \geq 0$ for all $(i, j) \in A$, every shortest path is simple.
input $G=(N, A)$ with $n=|N|$ and $m=|A|$, a node $s \in N$,

$$
c_{i j} \geq \underline{0} \quad \forall(i, j) \in A \text { with } c_{i j}=+\infty \text { if }(i, j) \notin A
$$

output λ Shortest paths from s to all other nodes of G

Idea: Consider the nodes in order of increasing cost of the shortest path from s to any one of the other nodes.

To each node $j \in N$, we assign a label $L[j]$ which corresponds, at the end of the algorithm, to the cost of a minimum cost path from s to j.
"Greedy" w.r.t. paths from s to j !

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Example

Two labels associated with each node j in S : [L[j], pred[j]] where $L[j]=$ cost of a shortest path from s to j, $\operatorname{pred}[j]=$ "predecessor" of j in the shortest path from s to j

A set of shortest path from s to every other node j can be retrieved backwards: $\operatorname{pred}[j]$, pred[pred [j]],..., s

resulting path from s to t
resulting path from s to node 2
E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Dijkstra's algorithm

Data structure

- $S \subseteq N$ subset of nodes whose labels are final
$\cdot \mathrm{L}[j]= \begin{cases}\underline{\text { cost }} \text { of a shortest path from } s \text { to } j, & \forall j \in S \\ \min \left\{\mathrm{~L}[i]+c_{i j}:(i, j) \in \delta^{+}(S)\right\}, & \forall j \notin S\end{cases}$

Given a directed graph G and the current subset of nodes $S \subset N$, consider the "outgoing" cut $\delta^{+}(S)$ and select $(v, h) \in \delta^{+}(S)$ such that:

$$
\mathrm{L}[v]+c_{v h}=\min \left\{\mathrm{L}[i]+c_{i j}:(i, j) \in \delta^{+}(S)\right\}
$$

$$
\text { thus } L[v]+c_{v h} \leq L[i]+c_{i j} \quad \forall(i, j) \in \delta^{+}(S)
$$

$\cdot \operatorname{pred}[j]= \begin{cases}\text { "predecessor"of } j \text { in the shortest path from } s \text { to } j & \forall j \in S \\ v \text { such that } \mathrm{L}[v]+c_{v j}=\min \left\{\mathrm{L}[i]+c_{i j}: i \in S\right\} & \forall j \notin S \\ \text { with } c_{i j}=\infty \text { if }(i, j) \notin A & \end{cases}$

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Pseudocode of Dijkstra's algorithm

input

$$
G=(N, A), n=|N|, m=|A|, s \in N, c_{i j} \geq 0 \quad \forall(i, j) \in A
$$

output \leadsto Shortest paths from s to all the other nodes

BEGIN

$$
\begin{aligned}
& \mathrm{S}:=\{\mathrm{s}\} ; \mathrm{L}[\mathrm{~s}]:=0 ; \\
& \text { pred[s]:=s; } \\
& \text { WHILE }|\mathrm{S}| \neq \mathrm{n} \text { DO } \\
& \quad \text { Select }(\mathrm{v}, \mathrm{~h}) \in \delta^{+}(\mathrm{S})=\{(\mathrm{i}, j):(\mathrm{i}, \mathrm{j}) \in \mathrm{A}, \mathrm{i} \in \mathrm{~S}, \mathrm{j} \notin \mathrm{~S}\} \text { such that } \\
& \qquad \mathrm{L}[\mathrm{v}]+\mathrm{c}_{\mathrm{vh}}=\min \left\{\mathrm{L}[\mathrm{i}]+\mathrm{c}_{\mathrm{ij}}:(\mathrm{i}, j) \in \delta^{+}(\mathrm{S})\right\} ; \\
& \mathrm{L}[\mathrm{~h}]:=\mathrm{L}[\mathrm{v}]+\mathrm{c}_{\mathrm{vh}} ; \\
& \mathrm{pred}[\mathrm{~h}]:=\mathrm{v} ; \\
& \mathrm{S}:=\mathrm{S} \cup\{\mathrm{~h}\} ; \quad \\
& \text { END-WHILE } \quad \begin{array}{l}
\text { N.B.: If } \delta^{+}(\mathrm{S})=\varnothing \text {, the algorithm ends: no } \mathrm{h} \in \mathrm{~N} \backslash \mathrm{~S} \text { is } \\
\text { reachable from } \mathrm{s}
\end{array}
\end{aligned}
$$

```
END
```


Complexity

Depends on how, at each iteration, the arc (v, h) is selected among those of the current outgoing cut $\delta^{+}(S)$.

If all m arcs are scanned and those that do not belong to $\delta^{+}(S)$ are discarded, the overall complexity would be $O(n m)$, hence $O\left(n^{3}\right)$ for dense graphs.

If all labels $\mathrm{L}[j]$ are determined by appropriate updates $(\approx$ Prim's algorithm), we need to consider a single arc of $\delta^{+}(S)$ for each node $j \notin S \Rightarrow$ overall complexity $O\left(n^{2}\right)$.

Proposition: Dijkstra's algorithm is exact.

Proof At k-th step: $S=\left\{\mathrm{s}, i_{2}, \ldots, i_{k}\right\}$ and
$\mathrm{L}[j]=\left\{\begin{array}{lc}\underline{\text { cost }} \text { of a } \underline{\text { minimum }} \text { cost path from } s \text { to } j, \quad \forall j \in S \\ \underline{\text { cost }} \text { of a } \underline{\text { minimum }} \text { cost path with all intermediate } \underline{\text { nodes }} \text { in } \underline{S} \\ \forall j \notin S\end{array}\right.$
By induction on the number k of steps :

- inductive basis: it is true for $k=1$ since

$$
S=\{s\}, \mathrm{L}[s]=0 \text { and } \mathrm{L}[j]=c_{s j} \quad \forall j \neq s .
$$

- inductive step: if it is true at the k-th step, it is also true at the $(k+1)$-th step.
($k+1$)-th step: Let $h \notin S$ be the node that is inserted in S and φ the path from s to h such that:

$$
\mathrm{L}[v]+c_{v h} \leq \mathrm{L}[i]+c_{i j} \quad \forall(i, j) \in \delta^{+}(S) .
$$

Let us verify that every path π from s to h has $c(\pi) \geq c(\varphi)$.

A set of shortest paths from s to all the nodes j can be retrieved via the vector of predecessors.

Remarks

1) Taking the union of a set of shortest paths from node s to all the other nodes of G, we obtain an arborescence rooted at s.

Such arborescences, which are referred to as shortest path trees, have nothing to do with minimum cost spanning trees!
2) Dijkstra's algorithm is not applicable when there are arcs with negative $\operatorname{cost} c_{i j}$.

Example

Dijkstra's algorithm yields the path $(1,3),(3,4)$ of cost 2 , but path $(1,2),(2,3),(3,4)$ has cost 1 .

Due to $\mathrm{c}_{23}<0$ the last step in the exactness proof fails!

The minimum cost from 1 to 3 is not updated after the first step. According to a "greedy" choice on the arcs in $\delta^{+}(\{1\})$, it is taken as c_{13} which is "locally" optimal $\left(\mathrm{c}_{13}<\mathrm{c}_{12}\right)$ even though the path $(1,2),(2,3)$ has a strictly smaller cost because $\mathrm{c}_{23}<0$.

Determine the shortest paths form node (0) to all the other nodes of the following graph:

2.3.3 Shortest path problem with negative costs

Observation: If the graph G contains a circuit of negative cost, the shortest path problem may not be well-defined.

Each time we go through the circuit, the cost decreases. There is no finite shortest path from s to t.

Floyd-Warshall's algorithm allows to detect the presence of circuits with negative cost, and hence identify the cases in which the problem is ill-defined.

It provides a set of shortest paths between all pairs of nodes, even when there are arcs with negative cost.

It is based on iteratively applying a triangular operation described below.

Floyd-Warshall's algorithm

input
Directed graph $G=(N, A)$ described via the $n \times n$ cost $\operatorname{matrix} C=\left[c_{\mathrm{ij}}\right]$.
output
For each pair of nodes $i, j \in N$, the cost $d_{i j}$ of shortest path from i to j.

Data structure: two $n \times n$ matrices D and P whose elements correspond, at the end of the algorithm, to

- $d_{i j}=\underline{\text { cost }}$ of a shortest path from i to j
- $p_{i j}=$ predecessor of j in shortest path from i to j

	1	2	3	4
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4

D
For $(i, j) \in A$ set $d_{\mathrm{ij}}=c_{\mathrm{ij}}$, for loops $d_{\mathrm{ii}}=0$, and for $(i, j) \notin A \operatorname{set} d_{\mathrm{ij}}=\infty$.

The matrix of predecessors is initialized with $p_{\mathrm{ij}}=i$, for all i.

Triangular operation with respect to node h :

For each pair of nodes i, j, with $i \neq h$ and $j \neq h$ (including case $i=j$), check whether when going from i to j it is more convenient to go via h :

$$
d_{i h}+d_{h j}<d_{i j}
$$

Cycle $h=1$: Since there are no such arcs, the matrices D and P remain unchanged.

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Cycle for $h=1$

skip $i=1$ and $j=1$

	子	2	3	4
>4	0	3	2	∞
2	∞	0	6	-10
3	∞	8	0	∞
4	∞	1	9	0

$0=d_{22}<d_{21}+d_{12}=\infty+3=\infty$
$6=d_{23}<d_{21}+d_{13}=\infty+2=\infty$
$-10=d_{24}<d_{21}+d_{14}=\infty+\infty=\infty$
$8=d_{32}<d_{31}+d_{12}=\infty+3=\infty$
$0=d_{33}<d_{31}+d_{13}=\infty+2=\infty$
$\infty=d_{34}<d_{31}+d_{14}=\infty+\infty=\infty$
$1=d_{42}<d_{41}+d_{12}=\infty+3=\infty$
$9=d_{43}<d_{41}+d_{13}=\infty+2=\infty$
$0=d_{44}<d_{41}+d_{14}=\infty+\infty=\infty$

	\mathbb{Z}	2	3	4
\mathbb{K}	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4

no update
no update

Cycle for $h=2$

skip $i=2$ and $j=2$

D	1	\geq	3	4
1	0	3	2	∞
> 2	∞	0	6	-10
3	∞	8	0	-2
4	∞	1		-9

P	1	\geq	3	4
1	1	1	1	12
>	2	2	2	2
3	3	3	3	${ }^{3} 2$
4	4	4	/2	4

$$
\begin{array}{|l}
\hline 0=d_{11}<d_{12}+d_{21}=3+\infty=\infty \\
\hline 2=d_{13}<d_{12}+d_{23}=3+6=9 \\
\hline \infty=d_{14}>d_{12}+d_{24}=\mathbf{3}-\mathbf{1 0}=\mathbf{- 7} \\
\hline \infty=d_{31}=d_{32}+d_{21}=8+\infty=\infty \\
\hline 0=d_{33}<d_{32}+d_{23}=8+6=14 \\
\hline \infty=\mathbf{d}_{\mathbf{3 4}}>\mathbf{d}_{\mathbf{3 2}}+\boldsymbol{d}_{\mathbf{2 4}}=\mathbf{8}-\mathbf{1 0}=\mathbf{- 2} \\
\hline 1=d_{41}<d_{42}+d_{21}=1+\infty=\infty \\
\hline \mathbf{9}=\mathbf{d}_{\mathbf{4 3}}>\mathbf{d}_{\mathbf{4 2}}+\mathbf{d}_{\mathbf{2 3}}=\mathbf{1}+\mathbf{6}=\mathbf{7} \\
\hline \mathbf{0}=\mathbf{d}_{\mathbf{4 4}}>\mathbf{d}_{\mathbf{4 2}}+\boldsymbol{d}_{\mathbf{2 4}}=\mathbf{1}-\mathbf{1 0}=\mathbf{- 9} \\
\hline
\end{array}
$$

no update
no update
$\mathbf{p}_{\mathbf{1 4}}:=\mathbf{p}_{\mathbf{2 4}}=\mathbf{2}$
no update
no update
$\mathbf{p}_{\mathbf{3 4}}:=\mathbf{p}_{\mathbf{2 4}}=\mathbf{2}$
no update
$\mathbf{p}_{\mathbf{4 3}}:=\mathbf{p}_{\mathbf{2 3}}=\mathbf{2}$
negative cost cycle found!
Reser

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Pseudocode of Floyd-Warshall's algorithm

```
BEGIN
        FOR i:=1 TO n DO
        FOR j:=1 TO n DO p pij := i; END-FOR
        END-FOR
        FOR h:=1 TO n DO /* triangular operation w.r.t. h */
        FOR i:=1 TO n WITH i }\not=\textrm{h}\mathrm{ DO
            FOR j:=1 TO n WITH j \not= h DO
            IF ( }\mp@subsup{d}{ih}{}+\mp@subsup{d}{hj}{}<\mp@subsup{d}{ij}{})\mathrm{ THEN
                dij}=\mp@subsup{d}{ih}{}+\mp@subsup{d}{\textrm{hj}}{}
                pij}:= \mp@subsup{p}{hj}{\prime}
            END-IF
            END-FOR
        END-FOR
        FOR i:=1 TO n DO
            IF dii < 0 THEN STOP; END-IF /* \exists a circuit with negative cost*/
        END-FOR
    END-FOR
END
```


Proposition: Floyd-Warshall's algorithm is exact.

Proof's idea: Assume the nodes of G are numbered from 1 to n. Just verify that, if the node index order is followed, after the h-th cycle the value $\mathrm{d}_{i j}$ for any i and j corresponds to the cost of a shortest path from i to j with only intermediate nodes in $\{1, \ldots, h\}$.

Complexity

Since in the worst case the triangular operation is executed for all nodes h and for each pair of nodes i and j, the overall complexity is $O\left(n^{3}\right)$.

Find the shortest paths between every pair of nodes of the following graph:

