2.3.5 Project planning

Definitions:

A project consists of a set of m activities with their duration: activity A_{i} has duration $d_{i} \geq 0, i=1, \ldots, m$.

```
estimate
```

Some pairs of activities are subject to a precedence constraint: $A_{i} \propto A_{j}$ indicates that A_{j} can start only after the end of A_{i}.

Example Activities: A, B, C, D, E

Precedences: $A \propto B, A \propto C, B \propto D, C \propto D, B \propto E$.

Model

A project can be represented by a directed graph $G=(N, A)$:

$$
\underline{\text { arc }} \leftrightarrow \underline{\text { activity }}
$$

arc length $=$ activity duration.

To account for the precedence constraints, the arcs must be positioned so that:
$A_{i} \propto A_{j} \Leftrightarrow$ there exists a directed path where the arc associated to $\underline{A}_{i} \underline{\text { preceeds }}$ the arc associated to \underline{A}_{j}

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Therefore we have:

Node $v \approx \underline{\text { event corresponding to the end of all the activities }}$ $(i, v) \in \delta^{-}(v)$ and hence to the possible beginning of all those $(v, j) \in \delta^{+}(v)$.

$$
\delta^{+}(v)
$$

Example Activities: A, B, C, D, E
Precedences: $A \propto B, A \propto C, B \propto D, C \propto D, B \propto E$

Property The directed graph G representing any project is
By contradiction: if $A_{i 1} \propto A_{12}, \ldots, A_{j k} \propto A_{k i}$ there would be a logical contradiction.

The above graph G can be simplified by contracting some arcs:

\triangle
When simplifying the graph, pay attention not to introduce unwanted precedence constraints.

If this dummy activity is maintained, unwanted $C \propto E$ is implied, besides $A \propto B, A \propto C, B \propto D, C \propto D, B \propto E$.
E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Artifical nodes and/or artificial arcs are introduced so that graph G

- contains a unique initial node s corresponding to the event "beginning of the project",
- contains a unique final node t corresponding to the event "end of the project",
- does not contain multiple arcs (with same endpoints).

Or

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Problem

Given a project (set of activities with durations and precedence constraints), schedule the activities so as to minimize the overall project duration , i.e., the time needed to complete all activities.

Property

$\underline{\text { Minimum overall project } \underline{\text { duration }}=\text { length of a }}$ longest path from s to t.

Since any s-t path represents a sequence of activities that must be executed in the specified order, its length provides a lower bound on the minimum overall project duration.

Critical path method (CPM)

Determines

- a schedule (a plan for executing the activities specifying the order and the alotted time) that minimizes the overall project duration,
- the slack of each activity, i.e., the amount of time by which its execution can be delayed, without affecting the overall minimum duration of the project.

Initialization: Construct the graph G representing the project and determine a topological order of the nodes.

Phase I: Consider the nodes by increasing indices and, for each node $h \in N$, determine: the earliest time $\operatorname{Tmin}[h]$ at which the event associated to node h can occur ($T \min [n]$ corresponds to the minimum overall project duration).

Phase II: Consider the nodes by decreasing indices and, for each node $h \in N$, determine:
the latest time Tmax[h] at which the event associated to node h can occur without delaying the completion of the project beyond the minimum project duration.

Phase III: For each activity $(i, j) \in A$, compute the slack

$$
\sigma_{i j}=\operatorname{Tmax}[j]-\operatorname{Tmin}[i]-d_{i j} .
$$

Example Consider the following project:

Act.	Duration	Predecessors
A	3	-
B	2	A
C	3	A
D	3	C
E	4	B,C
F	3	B
G	1	E,D
H	4	C
I	2	F

Precedence constraints:

$\mathrm{A} \propto \mathrm{B}, \mathrm{A} \propto \mathrm{C}, \mathrm{C} \propto \mathrm{D}, \mathrm{B} \propto \mathrm{E}, \mathrm{C} \propto \mathrm{E}$, $\mathrm{B} \propto \mathrm{F}, \mathrm{E} \propto \mathrm{G}, \mathrm{D} \propto \mathrm{G}, \mathrm{C} \propto \mathrm{H}, \mathrm{F} \propto \mathrm{I}$

Determine the overall minimum duration of the project and the slack for each activity.

Activities: A, B, C, D, E, F, G, H, I
Precedence constraints: $\mathrm{A} \propto \mathrm{B}, \mathrm{A} \propto \mathrm{C}, \mathrm{C} \propto \mathrm{D}, \mathrm{B} \propto \mathrm{E}, \mathrm{C} \propto \mathrm{E}$, $\mathrm{B} \propto \mathrm{F}, \mathrm{E} \propto \mathrm{G}, \mathrm{D} \propto \mathrm{G}, \mathrm{C} \propto \mathrm{H}, \mathrm{F} \propto \mathrm{I}$

Graphical model:

\ldots Dummy activities
(duration 0)

Longest path

Pseudocode of critical path method (CPM)

Input $G=(N, A)$ with $n=|N|$, duration $d_{i j}$ associated to each arc $(i, j) \in A$

Output
$\operatorname{Tmin}[i]$ and $\operatorname{Tmax}[i]$ for $i=1, \ldots, n$

```
BEGIN
    Order the nodes topologically;
    Tmin[1] := 0;
    FOR h:=2 TO n DO
        Tmin[h] := MAX{ Tmin[i] + dih : (i,h) \in \delta (h) }; O(n+m)
    END-FOR
    Tmax[n] := Tmin[n]; /* minimum project duration */
    FOR h:=n-1 DOWNTO 1 DO
        Tmax[h] := MIN{ Tmax[j] - dhj : (h,j) \in \delta+(h) }; O(n+m)
    END-FOR
END
Overall complexity: O(m)
```

Definition: An activity (i, j) with zero slack $\left(\sigma_{i j}=0\right)$ is critical.

$(4,6)$ is not crtitical since $\sigma_{46}=10-6-3=1$

$$
\begin{aligned}
& \sigma_{37}=9-5-3=1 \\
& \sigma_{48}=11-6-4=1
\end{aligned}
$$

Observation: $\operatorname{Tmin}[\mathrm{i}]=\operatorname{Tmax}[\mathrm{i}]$ and $\operatorname{Tmin}[\mathrm{j}]=\operatorname{Tmax}[\mathrm{j}]$ do not suffice to have: $\quad \sigma_{i j}=\operatorname{Tmax}[\mathrm{j}]-\operatorname{Tmin}[\mathrm{i}]-\mathrm{d}_{\mathrm{ij}}=0!$

Definition: A critical path is an $s-t$ path only composed of critical activities (one such path always exists).

\longrightarrow critical path with minimum project duration $=11$
E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Gantt charts

Introduced in the 1910s by Henry Gantt (1861-1919).
Provide temporal representations of the project.

Gantt chart at earliest : each activity (i, j) starts at time Tmin[i]

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Gantt chart at latest : each activity (i, j) ends at time Tmax[j]

