2.3.5 Project planning

Definitions:

A <u>project</u> consists of a set of *m* activities with their duration: activity A_i has duration $d_i \ge 0$, i = 1, ..., m.

Some pairs of activities are subject to a <u>precedence constraint</u>: $A_i \propto A_j$ indicates that A_j can start only after the end of A_i .

Example

Activities: A, B, C, D, EPrecedences: $A \propto B, A \propto C, B \propto D, C \propto D, B \propto E$.

Model

A project can be represented by a directed graph G = (N, A):

 $\underline{\operatorname{arc}} \leftrightarrow \underline{\operatorname{activity}}$

arc $\underline{length} = activity \underline{duration}$.

To account for the <u>precedence constraints</u>, the arcs must be positioned so that:

 $A_i \propto A_j \iff$ there exists a <u>directed path</u> where the <u>arc</u> associated to <u> A_i preceeds</u> the <u>arc</u> associated to <u> A_j </u>

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Therefore we have:

<u>Node</u> $v \approx \underline{\text{event}}$ corresponding to the end of all the activities (*i*, *v*) $\in \delta^{-}(v)$ and hence to the possible beginning of all those (*v*, *j*) $\in \delta^{+}(v)$.

Example

Activities: A, B, C, D, E

Precedences: $A \propto B$, $A \propto C$, $B \propto D$, $C \propto D$, $B \propto E$

Property

The directed graph G representing any project is <u>acyclic</u> (it is a DAG).

By contradiction: if $A_{i1} \propto A_{12},..., A_{jk} \propto A_{ki}$ there would be a logical contradiction.

The above graph G can be simplified by contracting some arcs:

When simplifying the graph, pay attention not to introduce unwanted precedence constraints.

If this dummy activity is maintained, <u>unwanted</u> $C \propto E$ is implied, besides $A \propto B, A \propto C, B \propto D, C \propto D, B \propto E$.

Artifical <u>nodes and/or artificial arcs</u> are introduced so that graph G

- contains a unique *initial node s* corresponding to the event "beginning of the project",
- contains a unique <u>final node t</u> corresponding to the event "end of the project",
- does not contain multiple arcs (with same endpoints).

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Problem

Given a project (set of activities with durations and precedence constraints), <u>schedule</u> the activities so as to <u>minimize</u> the overall <u>project duration</u>, i.e., the time needed to complete all activities.

Since <u>any *s*-*t* path</u> represents a sequence of activities that must be executed in the specified order, its <u>length</u> provides a <u>lower</u> <u>bound</u> on the <u>minimum</u> overall project <u>duration</u>.

Critical path method (CPM)

Determines

- a *schedule* (a plan for executing the activities specifying the order and the alotted time) that minimizes the overall project duration,
- the *slack* of each activity, i.e., the amount of time by which its execution can be delayed, without affecting the overall minimum duration of the project.

Initialization: Construct the graph *G* representing the project and determine a topological order of the nodes.

Phase I: Consider the nodes by increasing indices and, for each node $h \in N$, determine:

the <u>earliest time</u> Tmin[h] at which the event associated to node h can occur (Tmin[n] corresponds to the <u>minimum</u> overall <u>project duration</u>).

Phase II: Consider the nodes by decreasing indices and, for each node $h \in N$, determine:

the <u>latest time</u> Tmax[h] at which the event associated to node h can occur without delaying the completion of the project beyond the <u>minimum project duration</u>.

Phase III: For each activity $(i, j) \in A$, compute the <u>*slack*</u> $\sigma_{ij} = \text{Tmax}[j] - \text{Tmin}[i] - d_{ij}$.

Example

Consider the following project:

Act.	Duration	Predecessors
А	3	-
В	2	A
С	3	A
D	3	С
E	4	B,C
F	3	В
G	1	E,D
H	4	С
I	2	F

Precedence constraints:

 $A \propto B$, $A \propto C$, $C \propto D$, $B \propto E$, $C \propto E$, $B \propto F$, $E \propto G$, $D \propto G$, $C \propto H$, $F \propto I$

Determine the <u>overall minimum duration</u> of the project and the <u>slack</u> for each activity.

Activities: A, B, C, D, E, F, G, H, I

Precedence constraints: $A \propto B$, $A \propto C$, $C \propto D$, $B \propto E$, $C \propto E$, $B \propto F$, $E \propto G$, $D \propto G$, $C \propto H$, $F \propto I$

Graphical model:

11

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

13

Longest path

14

Pseudocode of critical path method (CPM)

G = (N, A) with n = |N|, duration d_{ij} associated to each arc $(i, j) \in A$

Tmin[*i*] and Tmax[*i*] for i = 1, ..., n

BEGIN

```
Order the nodes topologically; O(n+m)

Tmin[1] := 0;

FOR h:=2 TO n DO

Tmin[h] := MAX{ Tmin[i] + d<sub>ih</sub> : (i,h) \in \delta^-(h) }; O(n+m)

END-FOR

Tmax[n] := Tmin[n]; /* minimum project duration */

FOR h:=n-1 DOWNTO 1 DO

Tmax[h] := MIN{ Tmax[j] - d<sub>hj</sub> : (h,j) \in \delta^+(h) }; O(n+m)

END-FOR

END-FOR
```

Definition: An activity (i, j) with zero slack $(\sigma_{ij} = 0)$ is <u>critical</u>.

Observation: Tmin[i] = Tmax[i] and Tmin[j] = Tmax[j] do not suffice to have: $\sigma_{ij} = \text{Tmax}[j] - \text{Tmin}[i] - d_{ij} = 0$!

Definition: A *critical path* is an s - t path only composed of critical activities (one such path always exists).

Gantt charts

Introduced in the 1910s by Henry Gantt (1861-1919).

Provide temporal representations of the project.

Gantt chart at earliest : each activity (*i*, *j*) starts at time Tmin[*i*]

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Gantt chart at latest : each activity (*i*, *j*) ends at time Tmax[*j*]

(<i>i</i> , <i>j</i>)	d _{ij}	Tmin[<i>i</i>]	Tmax[<i>j</i>]
Α	3	0	3
В	2	3	6
C	3	3 6 6 5	6
D	3	6	10
E	4	6	10
F	3	5	9
G	1	10	11
Н	4	6	11
- I	2	8	11

19