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4 Linear Programming (LP)
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Definition: A Linear Programming (LP) problem is an optimization
problem:

min    f (x)
s.t.

x ∈ X ⊆ n 

where 

• the objective function f : X   is linear,

• the feasible region X={ x ∈ n : gi(x) ri 0, i ∈ {1,…, m} } with

ri =,  ,  and gi : n    linear functions  i = 1,…, m.
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Definition: x* ∈ n is an optimal solution of the LP

min    f (x)
s.t.

x ∈ X ⊆ n 

if f (x*) ≤ f (x)     x ∈ X.

A wide variety of decision-making problems can be formulated or 
approximated as linear programs (LPs).

They often involve the optimal allocation of a given set of limited 
resources to different activities.
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min z = cTx

Ax ≥ b

x ≥ 0

General form: min z = c1 x1 + … + cn xn

a11 x1 + … + a1n xn ≥ b1
(=)
(≤)

⋮ ⋮
am1 x1 + … + amn xn ≥ bm(=)

(≤)
x1, …, xn ≥ 0

Matrix notation:
x1

c1 … cn ⋮
xn

x1
⋮  ≥ 0
xn

a11 … a1n x1 b1⋮ ⋮   ⋮ ≥  ⋮
am1… amn xn bm

min



1825/26: Fourier presents a method to solve systems of linear inequalities and 
discusses LPs with 2-3 variables.           

1939: Kantorovitch lays the foundations of LP (Nobel prize, 1975)

1947: Dantzig independently proposes LP and invents the Simplex algorithm.
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Historical sketch
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Example 1: Diet problem

Given

n aliments j = 1,…, n

m nutrients (basic substances)   i = 1,…, m

aij amount of i-th nutrient contained in one unit of the j-th 
aliment

bi daily requirement of the i-th nutrient

cj cost of a unit of j-th aliment,

determine a diet that minimizes the total cost while satisfying 
all the daily requirements. 
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xj = amount of j-th aliment in the diet, with  j = 1,..., n
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Decision variables:
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Example 2: Transportation problem (single product)

Given
m production plants i = 1,…, m
n clients j = 1,…, n
cij unit transportation cost from plant i to client j
pi maximum supply (production capacity) of plant i
dj demand of client j 
qij maximum amount transportable from plant i to client j,

determine a transportation plan that minimizes the total costs while 
respecting plant capacities and client demands.
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n

j
iij
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px

1

1
 i = 1,…, m

 j = 1,…, n

(plant capacity)

(client demand)

Decision variables:  xij = amount of product transported from i to j,   
with i = 1,…, m and j = 1,…, n.


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
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j
j

m

i
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11
   Assumption:

0 ≤ xij ≤ qij  i, j (transportation capacity)
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Example 3: Production planning problem

Given

n products (j = 1,…, n) which compete for resources

m resources (i = 1,…, m) 

cj profit (selling price – cost) per unit of  j-th product

aij amount of i-th resource needed to produce one unit of j-th
product

bi maximum available amount of i-th resource,

determine a production plan that maximizes the total profit given 
the available resources.
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xj = amount of j-th product, with j = 1,..., n

njx
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

Decision variables:
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Assumptions of LP models

Proportionality:                                                

contribution of each variable = constant  variable

Drawback: does not account for economies of scale.

Additivity:

contribution of all variables = sum of single contributions 

Drawback: competing products  profits are not independent.

1) Linearity (proportionality and additivity) of the objective function 
and constraints.
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2) Divisibility

The variables can take fractional (rational) values.

3) Parameters are considered as constants which can be estimated 
with a sufficient degree of accuracy.

Uncertainty in the parameters may require more complex 
mathematical programs.

In Linear Programming, if we have different “scenarios” we adopt 
“sensitivity analysis” (see end of Chapter 4).
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General form:

min z = cTx
(max)

A1 x ≥ b1
A2 x ≤ b2
A3 x = b3

xj ≥ 0 for j ∈ J ⊆{1,…, n}
xj free for  j ∈ {1,…, n} \ J

4.1  Equivalent forms

min    z = cTx
Ax = b
x ≥ 0

only equality constraints and
all variables non negative.

Definition:  Standard form

inequality constraints
equality constraints
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The two forms are equivalent.

Warning: the transformation may involve adding/deleting 
variables and/or constraints. 

Simple transformation rules allow to pass form one form to the 
other form.
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Transformation rules

• max cTx = - min - cTx

• aTx ≤ b ⇒
aTx + s = b

s ≥ 0 slack variable 

• aTx ≥ b ⇒
aTx - s = b

s ≥ 0 surplus variable 
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After substituting  xj with xj
+– xj

–, we delete xj from the problem.
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• xj unrestricted in sign    ⇒
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Example

General from: max 2x1 – 3x2
s.t. 4x1 – 7x2 ≤ 5

6x1 – 2x2 ≥ 4
x1 ≥ 0, x2 unrestricted

max 2x1 – 3x3 + 3x4
s.t. 4x1 – 7x3 + 7x4 ≤ 5

6x1 – 2x3 + 2x4 ≥ 4
x1, x3, x4 ≥ 0

Step 1: x2 = x3 – x4
x3, x4 ≥ 0


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min -2x1 + 3x3 - 3x4
4x1 – 7x3 + 7x4 + x5 – x6= 5
6x1 – 2x3 + 2x4 + x5 – x6= 4
x1, x3, x4 , x5, x6 ≥ 0

Step 2: introduce slack and 
surplus variables x5 and x6



Step 3: change the objective 
function sign
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Other straightforward transformations

a x ≤ b  -a x ≥-b

a x ≥ b  -a x ≤-b

a x ≥ b a x ≥ b

a x ≤ b -a x ≥-b
a x = b  
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Capital of 10.000 € and two possible investments A and B with, 
respectively, 4% and 6% expected return.

4.2  Geometry of Linear Programming

Example Capital budgeting

Determine a portfolio that maximizes the total expected return, 
while respecting the diversification constraints:

• at most 75% of the capital is invested in A,

• at most 50% of the capital is invested in B.



E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 22

xA = amount invested in A
xB = amount invested in B

max z = 0,04 xA + 0,06 xB
s.t.

xA + xB ≤ 10.000
xA ≤ 0.75 · 10.000
xB ≤ 0.50 · 10.000

xA, xB ≥ 0

Model:
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4.2.1  Graphical solution

xA, xB ≥ 0

xA ≤ 7.500

xB ≤ 5.000

Feasible region

K euro

xB

xA
2 4 86 10

2

4

8
6

10

xA + xB ≤ 10.000
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The level curves of a LP are lines:
0,04 xA + 0,06 xB = z  constant

z = 500

z = 360

z = 240

Optimal solution:

x*
A

x*
B

5000
5000

z *=500

=

Definition: A level curve of value z of 
a function  f  is the set of points in n 

where f  is constant and takes value z.

2 4 86 10

2

4

8
6

10

K euro
xB

xA

f (x) = 0,04
0,06 is the direction at x of fastest increase of f .

z = 0 f (x)

z max increase

f (x)
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4.2.2  Vertices of the feasible region

Definitions:  H = { x ∈ n : aTx = b } is a hyperplane and
H- = { x ∈ n : aTx ≤ b } is an affine half-space. 

Half-plane in 2

b = 0

a

H- ={ x ∈ n : aTx ≤ b}

a ≠ 0

Each inequality constraint (aTx ≤ b) defines an affine half-space in 
the variable space.

Consider a LP with inequality constraints (easier to visualize).
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Definition: The feasible region X is a polyhedron P 
 half-spaces

# finite             
P can be empty or 
unbounded

Definition: A subset X ⊆ n is convex if for each pair y1, y2 ∈ X,
X contains the whole segment connecting y1 and y2.

y2y1
≠ convex

y1
y2

[y1, y2] = { x ∈ n : x =  y1 + (1 - ) y2 with   ∈ [0, 1] }
segment  all the convex combinations of y1 e y2 

x

.
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Property: A polyhedron P is a convex set of n.

Indeed: any half-space is clearly convex

y1
y2

and the intersection of a finite number of convex sets is also a 
convex set. 
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Definition: A vertex of P is a point of P which cannot be expressed as 
a convex combination of two other distinct points of P.

(0,1,3) (1,0,3)
(0,0,3)

(2,0,2)

(0,0,0)

(0,3,1)
(2,0,0)

(2,2,0)

(1,3,0)
(0,3,0)

edge

H1

H2

H3

x1

x2

x3

facet

Polyedron P vertex x~

.
.

.
.not a vertex! x is a vertex of P

if  ∄ y1, y2∈ P,  y1≠y2

and  ∈ (0, 1) s.t.

x =  y1 + (1 - ) y2~

~
Algebraically:
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Property: A non-empty polyhedron P ={ x  n : Ax = b, x  0 }  (in   
standard form) or P ={ x  n : Ax  b, x  0 } (in canonical 
form) has a finite number ( 1) of vertices.

Definition: Given a polyhedron P, a vector d  n with d  0 is an 
unbounded feasible direction of P if, for every point x0  P,  the “ray” 
{ x  n : x = x0 +  d ,   0 } is contained in P.

.

P

x0

d d0
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Theorem (representation of polyhedra -- Weyl-Minkowski):

Every point x of a polyhedron P can be expressed as a convex 
combination of its vertices x1,..., xk plus (if needed) an unbounded 
feasible direction d of P :

x = 1 x1 +...+ k xk + d

where the multipliers i  0 satisfy 1 +...+ k = 1.

.
.

P

d

. .x1

x2

x x[x1, x2],  d = 0
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Consequence: Every point x of a polytope P can be expressed as a 
convex combination of its vertices.

.

.
P.

.
x2

x1

x4

x3

x = 1 x1 +...+ 4 x4.
with i  0 and 1 +...+ 4 = 1

(d = 0)

Definition: A polytope is a bounded polyhedron, that is, it has the 
only unbounded feasible direction d = 0.
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Fundamental theorem of Linear Programming:

Consider a LP  min{ cTx : x  P } where P  n  is a non-empty 
polyhedron of the feasible solutions (in standard or canonical 
form). Then either there exists (at least) one optimal vertex or the 
value of the objective function is unbounded below on P.

Proof

Case 1:  P has an unbounded feasible direction d such that cTd < 0

P is unbounded and the values  z = cTx  - 

along the direction d
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Case 2:  P has no unbounded feasible direction d such that cTd < 0, 
that is, for all of them we have cTd  0.

 iT

ki

T
k

i

iT
i

k

i

i
i

TT xcdcxcdxcxc












  111

min

For any x ∈ P, we have d = 0 or  cTd  0 and hence

Any point of P can be expressed as:     

where x1,..., xk are the vertices of P, i  0 with 1+...+k=1,  and d = 0,
or d is a unbounded feasible direction.

dxx
k

i

i
i  

1


since i  0 i and 1+...+k=1.



0
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An interior point x ∈ P cannot be an optimal solution:

c = direction of fastest increase in z
(constant gradient)

vertices
feasible directions 

improving directions

x  always an improving direction

In an optimal vertex all feasible directions (respecting feasibility for a 
sufficiently small step) are “worsening” directions:

-c

Geometrically



E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 35

The theorem implies that, although the variables can take fractional 
values, Linear Programs can be viewed as combinatorial problems: 

Graphical method only applicabile for n ≤ 3.

Finite but often exponential number 

we “only” need to examine the vertices of the polyhedron of the 
feasible solutions!
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4.2.3  Four types of Linear Programs

• Multiple (infinitely many) optimal solutions

• A unique optimal solution

x1

x2 c
.

c

Observation: Since min cTx, better solutions found by moving along -c.
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• Infeasible LP

• Unbounded LP

Empty polyhedron (no 
feasible solution)

Unbounded polyhedron and 
unlimited objective function 
value

c


