## 4 Linear Programming (LP)

Definition: A Linear Programming (LP) problem is an optimization problem:

$$
\begin{array}{cl}
\min & f(\underline{x}) \\
\text { s.t. } & \\
& \underline{x} \in \mathrm{X} \subseteq \mathbb{R}^{n}
\end{array}
$$

where

- the objective function $f: \mathrm{X} \rightarrow \mathbb{R}$ is linear,
- the feasible region $X=\left\{\underline{x} \in \mathbb{R}^{n}: g_{i}(\underline{x}) \mathrm{r}_{i} 0, i \in\{1, \ldots, m\}\right\}$ with

$$
\mathrm{r}_{i} \in\{=, \geq, \leq\} \text { and } g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { linear functions } \forall i=1, \ldots, m
$$

Definition: $\underline{x}^{*} \in \mathbb{R}^{n}$ is an optimal solution of the LP

$$
\begin{array}{ll}
\min & f(\underline{x}) \\
\text { s.t. } & \underline{x} \in \mathrm{X} \subseteq \mathbb{R}^{n}
\end{array}
$$

if $f\left(\underline{x}^{*}\right) \leq f(\underline{x}) \quad \forall \underline{x} \in \mathrm{X}$.

A wide variety of decision-making problems can be formulated or approximated as linear programs (LPs).

They often involve the optimal allocation of a given set of limited resources to different activities.

General form:

Matrix notation:

$$
\begin{aligned}
& \min \quad z=\underline{c}^{T} \underline{X} \\
& A \underline{x} \geq \underline{b} \\
& \underline{x} \geq \underline{0}
\end{aligned}
$$

$$
\min \left[\begin{array}{llll}
c_{1} & \ldots & c_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \\
\vdots \\
a_{m 1} & \ldots & \vdots \\
m n
\end{array}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \geq\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]
$$

$$
\text { E. Amaldi -- Foundations of Operations Research -- Politecnico }\left[\begin{array}{c}
x_{1} \\
\vdots \\
X_{n}
\end{array}\right] \geq \underline{0}
$$

$$
\begin{aligned}
& \min Z=c_{1} x_{1}+\ldots+c_{n} x_{n} \\
& a_{11} x_{1}+\ldots+a_{1 n} x_{n} \underset{(=)_{1}}{\geq} b_{1} \\
& \text { ! } \\
& a_{m 1} x_{1}+\ldots+a_{m n} x_{n} \underset{(\underset{=}{\geq})}{\geq} b_{m} \\
& x_{1}, \ldots, x_{n} \geq 0
\end{aligned}
$$

## Historical sketch



Jean Baptiste Joseph Fourier (1786-1830)

L.V. Kantorovitch (1912-1986)

G.B. Dantzig
(1914-2005)

1825/26: Fourier presents a method to solve systems of linear inequalities and discusses LPs with 2-3 variables.

1939: Kantorovitch lays the foundations of $\mathbf{L P}$ (Nobel prize, 1975)
1947: Dantzig independently proposes $\mathbf{L P}$ and invents the Simplex algorithm.

## Example 1: Diet problem

## Given

$n \quad$ aliments $j=1, \ldots, n$
$m$ nutrients (basic substances) $i=1, \ldots, m$
$a_{i j} \quad$ amount of $i$-th nutrient contained in one unit of the $j$-th aliment
$b_{i} \quad$ daily requirement of the $i$-th nutrient
$c_{j} \quad$ cost of a unit of $j$-th aliment,
determine a diet that minimizes the total cost while satisfying all the daily requirements.

## Decision variables:

$$
x_{j}=\text { amount of } j \text {-th aliment in the diet, with } j=1, \ldots, n
$$

$$
\begin{aligned}
\min & \sum_{j=1}^{n} c_{j} x_{j} \\
& \\
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} & \forall i=1, \ldots, m \\
& x_{j} \geq 0
\end{aligned} \quad \forall j=1, \ldots, n m ?
$$

## Example 2: Transportation problem (single product)

Given
$m \quad$ production plants $\quad i=1, \ldots, m$
$n \quad$ clients $\quad j=1, \ldots, n$
$c_{i j} \quad$ unit transportation cost from plant $i$ to client $j$
$p_{i} \quad$ maximum supply (production capacity) of plant $i$
$d_{j} \quad$ demand of client $j$
$q_{i j} \quad$ maximum amount transportable from plant $i$ to client $j$,
determine a transportation plan that minimizes the total costs while respecting plant capacities and client demands.

Assumption: $\quad \sum_{i=1}^{m} p_{i} \geq \sum_{j=1}^{n} d_{j}$

Decision variables: $x_{i j}=$ amount of product transported from $i$ to $j$, with $i=1, \ldots, m$ and $j=1, \ldots, n$.

$$
\begin{array}{ll}
\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\sum_{j=1}^{n} x_{i j} \leq p_{i} & \forall i=1, \ldots, m \quad \text { (plant capacity) } \\
\sum_{i=1}^{m} x_{i j} \geq d_{j} \quad \forall j=1, \ldots, n \quad \text { (client demand) } \\
0 \leq x_{i j} \leq q_{i j} \quad \forall i, j \quad \text { (transportation capacity) } \\
\text { E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano }
\end{array}
$$

## Example 3: Production planning problem

Given
$n \quad$ products $(j=1, \ldots, n)$ which compete for resources
$m$ resources ( $i=1, \ldots, m$ )
$c_{j} \quad$ profit (selling price - cost) per unit of $j$-th product
$a_{i j}$ amount of $i$-th resource needed to produce one unit of $j$-th product
$b_{i}$ maximum available amount of $i$-th resource,
determine a production plan that maximizes the total profit given the available resources.

## Decision variables:

$$
x_{j}=\text { amount of } j \text {-th product, with } j=1, \ldots, n
$$

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\
& \forall i=1, \ldots, m \\
x_{j} \geq 0 & \forall j=1, \ldots, n
\end{aligned}
$$

## Assumptions of LP models

1) Linearity (proportionality and additivity) of the objective function and constraints.

Proportionality:
contribution of each variable $=$ constant $\times$ variable
Drawback: does not account for economies of scale.

Additivity:
contribution of all variables $=$ sum of single contributions
Drawback: competing products $\Rightarrow$ profits are not independent.

## 2) Divisibility

The variables can take fractional (rational) values.
3) Parameters are considered as constants which can be estimated with a sufficient degree of accuracy.

Uncertainty in the parameters may require more complex mathematical programs.

In Linear Programming, if we have different "scenarios" we adopt "sensitivity analysis" (see end of Chapter 4).

### 4.1 Equivalent forms

General form:

$$
\begin{aligned}
& \min \quad z=\underline{c}^{T} \underline{X} \\
& \text { (max) } \\
& \begin{array}{l}
A_{1} \underline{x} \geq \underline{b}_{1} \\
A_{2} \underline{b_{2}} \leq \underline{b}_{2} \\
A_{3} \underline{b_{3}}=\underline{b}_{3} \longleftarrow \text { inequality constraints } \\
x_{j} \geq 0 \quad \text { for } j \in J \subseteq\{1, \ldots, n\} \\
x_{j} \text { free } \quad \text { for } j \in\{1, \ldots, n\} \backslash J
\end{array}
\end{aligned}
$$

Definition: Standard form

$$
\begin{aligned}
& \min z=\underline{c}^{T} \underline{x} \\
& A \underline{x}=\underline{b} \\
& \underline{x} \geq \underline{0}
\end{aligned}
$$

only equality constraints and
all variables non negative.

## The two forms are equivalent.

Simple transformation rules allow to pass form one form to the other form.

Warning: the transformation may involve adding/deleting variables and/or constraints.

## Transformation rules

- $\max \underline{c}^{T} \underline{x}=-\min -\underline{c}^{T} \underline{\underline{x}}$
- $\underline{a}^{T} \underline{x} \leq b \Rightarrow\left\{\begin{array}{r}\underline{a}^{T} \underline{x}+s=b \\ s \geq 0 \quad \text { slack variable }\end{array}\right.$
- $\underline{a}^{T} \underline{X} \geq b \Rightarrow\left\{\begin{array}{r}\underline{a}^{T} \underline{X}-s=b \\ s \geq 0 \quad \text { surplus variable }\end{array}\right.$
- $x_{j}$ unrestricted in sign $\Rightarrow\left\{\begin{array}{c}x_{j}=x_{j}^{+}-x_{j}^{-} \\ x_{j}^{+} \geq 0 \\ x_{j}^{-} \geq 0\end{array}\right.$

After substituting $x_{j}$ with $x_{j}^{+}-x_{j}^{-}$, we delete $x_{j}$ from the problem.

## Example

General from:

$$
\begin{array}{cl}
\max & 2 x_{1}-3 x_{2} \\
\text { s.t. } & 4 x_{1}-7 x_{2} \leq 5 \\
& 6 x_{1}-2 x_{2} \geq 4 \\
& x_{1} \geq 0, \quad x_{2} \text { unrestricted }
\end{array}
$$

## $\Rightarrow$

Step 1: $x_{2}=x_{3}-x_{4}$

$$
x_{3}, x_{4} \geq 0
$$

$\max \quad 2 x_{1}-3 x_{3}+3 x_{4}$
s.t. $4 x_{1}-7 x_{3}+7 x_{4} \leq 5$
$6 x_{1}-2 x_{3}+2 x_{4} \geq 4$
$x_{1}, x_{3}, x_{4} \geq 0$

$$
\begin{array}{lll}
\Rightarrow & \min & -2 x_{1}+3 x_{3}-3 x_{4} \\
& 4 x_{1}-7 x_{3}+7 x_{4}+x_{5}=5 \\
& & 6 x_{1}-2 x_{3}+2 x_{4}-x_{6}=4 \\
\text { duce slack and } & & x_{1}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array}
$$

Step 2: introduce slack and surplus variables $x_{5}$ and $x_{6}$

Step 3: change the objective function sign

## Other straightforward transformations

$$
\begin{aligned}
& a \underline{x} \leq \underline{b} \rightarrow-\underline{a} \underline{x} \geq-\underline{b} \\
& a \underline{x} \geq \underline{b} \rightarrow-\underline{a} \underline{x} \leq-\underline{b}
\end{aligned}
$$

$$
\underline{a} \underline{x}=\underline{b} \rightarrow\left\{\begin{array} { l } 
{ \underline { a } \underline { x } \geq \underline { b } } \\
{ \underline { a } \underline { x } \leq \underline { b } }
\end{array} \rightarrow \left\{\begin{array}{l}
\underline{a} \underline{x} \geq \underline{b} \\
-\underline{a} \underline{x} \geq-\underline{b}
\end{array}\right.\right.
$$

### 4.2 Geometry of Linear Programming

## Example Capital budgeting

Capital of $10.000 €$ and two possible investments A and B with, respectively, $4 \%$ and $6 \%$ expected return.

Determine a portfolio that maximizes the total expected return, while respecting the diversification constraints:

- at most $75 \%$ of the capital is invested in A,
- at most $50 \%$ of the capital is invested in B.

Model:
$x_{A}=$ amount invested in A
$x_{B}=$ amount invested in B
$\max \quad z=0,04 x_{A}+0,06 x_{B}$
s.t.

$$
\begin{aligned}
x_{A}+x_{B} & \leq 10.000 \\
x_{A} & \leq 0.75 \cdot 10.000 \\
x_{B} & \leq 0.50 \cdot 10.000 \\
x_{A}, x_{B} & \geq 0
\end{aligned}
$$

### 4.2.1 Graphical solution



Feasible region

$$
x_{A}, x_{B} \geq 0
$$



Definition: A level curve of value $z$ of a function $f$ is the set of points in $\mathbb{R}^{n}$ where $f$ is constant and takes value $z$.

The level curves of a LP are lines:

$$
0,04 x_{A}+0,06 x_{B}=z \leftarrow \text { constant }
$$

Optimal solution:

$$
\begin{gathered}
\binom{x_{A}^{*}}{x_{B}^{*}}=\binom{5000}{5000} \\
Z^{*}=500
\end{gathered}
$$

$$
\nabla f(\underline{x})=\binom{0,04}{0,06} \text { is the direction at } \underline{x} \text { of } \underline{\text { fastest increase of } f . . . . ~}
$$

### 4.2.2 Vertices of the feasible region

Consider a LP with inequality constraints (easier to visualize).

Definitions: $H=\left\{\underline{x} \in \mathbb{R}^{\mathrm{n}}: \underline{a}^{T} \underline{x}=b\right\}$ is a hyperplane and $H^{-}=\left\{\underline{x} \in \mathbb{R}^{\mathrm{n}}: \underline{a}^{T} \underline{\underline{x}} \leq b\right\}$ is an affine half-space. Half-plane in $\mathbb{R}^{2}$

Each inequality constraint ( $\left.\underline{a}^{T} \underline{\underline{x}} \leq b\right)$ defines an affine half-space in the variable space.

$$
\begin{array}{r}
H^{-}=\left\{\underline{x} \in \mathbb{R}^{\mathrm{n}}: \underline{a}^{T} \underline{x} \leq b\right\} \\
\underline{\underline{a}} \neq \underline{0}
\end{array}
$$



Definition: The feasible region X is a polyhedron $P$
$\cap$ half-spaces
\# finite
$P$ can be empty or unbounded


Definition: A subset $\mathrm{X} \subseteq \mathbb{R}^{\mathrm{n}}$ is convex if for each pair $y^{1}, \underline{y}^{2} \in \mathrm{X}$, X contains the whole segment connecting $y^{1}$ and $y^{2}$.


$$
\left[y^{1}, \underline{y}^{2}\right]=\left\{\underline{x} \in \mathbb{R}^{\mathrm{n}}: \underline{x}=\alpha \underline{y}^{1}+(1-\alpha) \underline{y}^{2} \text { with } \alpha \in[0,1]\right\}
$$

segment $\equiv\left\{\right.$ all the convex combinations of $y^{1}$ e $\left.y^{2}\right\}$
E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano

## Property: A polyhedron $P$ is a convex set of $\mathbb{R}^{n}$.



Indeed: any half-space is clearly convex

and the intersection of a finite number of convex sets is also a convex set.


Algebraically:
$\underline{\widetilde{x}}$ is a vertex of $P$
if $\nexists y^{1}, y^{2} \in P, y^{1} \neq y^{2}$ and $\alpha \in(0,1)$ s.t. $\underline{\underline{x}}=\alpha \underline{y}^{1}+(1-\alpha) y^{2}$

Definition: A vertex of $P$ is a point of $P$ which cannot be expressed as a convex combination of two other distinct points of $P$.

Property: A non-empty polyhedron $P=\left\{\underline{x} \in \mathbb{R}^{\mathrm{n}}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\right\}$ (in standard form) or $P=\left\{\underline{x} \in \mathbb{R}^{\mathrm{n}}: A \underline{x} \geq \underline{b}, \underline{x} \geq \underline{0}\right\}$ (in canonical form) has a finite number ( $\geq 1$ ) of vertices.

Definition: Given a polyhedron $P$, a vector $\underline{d} \in \mathbb{R}^{\mathrm{n}}$ with $\underline{d} \neq \underline{0}$ is an unbounded feasible direction of $P$ if, for every point $\underline{x}_{0} \in P$, the "ray" $\left\{\underline{x} \in \mathbb{R}^{\mathrm{n}}: \underline{x}=\underline{x}_{0}+\lambda \underline{d}, \lambda \geq 0\right\}$ is contained in $P$.

E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano

Theorem (representation of polyhedra -- Weyl-Minkowski):
Every point $\underline{x}$ of a polyhedron $P$ can be expressed as a convex combination of its vertices $\underline{x}^{1}, \ldots, \underline{x}^{\mathrm{k}}$ plus (if needed) an unbounded feasible direction $\underline{d}$ of $P$ :

$$
\underline{x}=\alpha_{1} \underline{x}^{1}+\ldots+\alpha_{\mathrm{k}} \underline{x}^{\mathrm{k}}+\underline{d}
$$

where the multipliers $\alpha_{\mathrm{i}} \geq 0$ satisfy $\alpha_{1}+\ldots+\alpha_{\mathrm{k}}=1$.


Definition: A polytope is a bounded polyhedron, that is, it has the only unbounded feasible direction $\underline{d}=\underline{0}$.

Consequence: Every point $\underline{x}$ of a polytope $P$ can be expressed as a convex combination of its vertices.


## Fundamental theorem of Linear Programming:

Consider a LP $\min \left\{\underline{c}^{T} \underline{x}: \underline{x} \in P\right\}$ where $P \subseteq \mathbb{R}^{\mathrm{n}}$ is a non-empty polyhedron of the feasible solutions (in standard or canonical form). Then either there exists (at least) one optimal vertex or the value of the objective function is unbounded below on $P$.

## Proof

Case 1: $P$ has an unbounded feasible direction $\underline{d}$ such that $\underline{c}^{T} \underline{d}<0$
$P$ is unbounded and the values $Z=\underline{c}^{T} \underline{X} \rightarrow-\infty$ along the direction $\underline{d}$

Case 2: $P$ has no unbounded feasible direction $\underline{d}$ such that $\underline{c}^{T} \underline{d}<0$, that is, for all of them we have $\underline{c}^{T} \underline{d} \geq 0$.

Any point of $P$ can be expressed as:

$$
\underline{x}=\sum_{i=1}^{k} \alpha_{i} \underline{x}^{i}+\underline{d}
$$

where $\underline{x}^{1}, \ldots, \underline{x}^{k}$ are the vertices of $P, \alpha_{\mathrm{i}} \geq 0$ with $\alpha_{1}+\ldots+\alpha_{\mathrm{k}}=1$, and $\underline{d}=\underline{0}$, or $\underline{d}$ is a unbounded feasible direction.

For any $\underline{x} \in P$, we have $\underline{d}=\underline{0}$ or $\underline{\underline{c}}^{T} \underline{d} \geq 0$ and hence

$$
\begin{equation*}
\underline{c}^{T} \underline{x}=\underline{c}^{T}\left(\sum_{i=1}^{k} \alpha_{i} \underline{x}^{i}+\underline{d}\right)=\sum_{i=1}^{k} \alpha_{i} \underline{c}^{T} \underline{x}^{i}+\underbrace{\underline{c}^{T}}_{\mathbb{V}} \underline{d} \geq \min _{1 \leq i \leq k}\left\{\underline{c}^{T} \underline{x}^{i}\right\} \tag{0}
\end{equation*}
$$

since $\alpha_{i} \geq 0 \forall i$ and $\alpha_{1}+\ldots+\alpha_{\mathrm{k}}=1$.

## Geometrically

An $\underline{\text { interior point }} \underline{x} \in P$ cannot be an optimal solution:


In an optimal vertex all feasible directions (respecting feasibility for a sufficiently small step) are "worsening" directions:

E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano

The theorem implies that, although the variables can take fractional values, Linear Programs can be viewed as combinatorial problems:
we "only" need to examine the vertices of the polyhedron of the feasible solutions!

Finite but often exponential number

Graphical method only applicabile for $n \leq 3$.

### 4.2.3 Four types of Linear Programs

Observation: Since $\min \underline{\underline{c}}^{T} \underline{\mathcal{X}}$, better solutions found by moving along - $\underline{\mathcal{c}}$.

- A unique optimal solution

- Multiple (infinitely many) optimal solutions

- Unbounded LP


Unbounded polyhedron and unlimited objective function value

- Infeasible LP


Empty polyhedron (no feasible solution)

