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5 Integer Linear Programming (ILP)
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min cTx
Ax ≥ b

x ≥ 0 with x ∈ Zn ( x integer ).

Assumption: parameters A, b integer (without loss of generality).

Observation: The integrality condition xj ∈ Z is non linear since it 
can be expressed as        sin ( xj) = 0.

If xj∈ {0, 1} for all j, binary LP.

If not all xj are integer, mixed integer LP.

Definition:  An Integer Linear Programming problem is an 
optimization problem of the form

(ILP)
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Example:

optimal ILP solution  

with zILP = 33

321
x1

3

2

1

x2

ILP feasible region  lattice (with a finite or infinite number of points).

7x1+ 4x2=13

zILP = max  z = 21x1 + 11x2
s.t. 7x1 + 4x2 ≤13

x1, x2 ≥ 0 integer
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Example cont.:

By deleting the integrality 
constraints, we obtain the 
following Linear Program : optimal ILP solution         

with zILP = 33

321
x1

3

2

1

x2

7x1+ 4x2=13

optimal LP solution 
with zLP = 39

ILP feasible region   lattice (with a finite or infinite number of points)

zLP = max  z = 21x1 + 11x2
s.t. 7x1 + 4x2 ≤13

x1, x2 ≥ 0
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Definition:  Let     zILP ≔ max cTx
Ax ≤ b

x ≥ 0 integer
XILP

The problem zLP ≔ max cTx
Ax ≤ b

x ≥ 0
XLP  XILP

is the linear (continuous) relaxation of (ILP).

Observation: For any ILP with min, we have zILP ≥ zLP, i.e., zLP is a 
lower bound on the optimal value of  (ILP).   

Property:  For any ILP with max, we have zILP ≤ zLP, i.e., zLP is an 
upper bound on the optimal value of  (ILP).

(ILP)

(LP)
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First idea: relax the integrality constraints of (ILP) and round
up/down the optimal solution of the linear relaxation (LP).

If an optimal solution of (LP) is integer, then it is also an 
optimal solution of (ILP).

But often the rounded optimal solutions of (LP) are:

- infeasible for (ILP),

- useless -- very different from an optimal solution of (ILP).
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- Infeasible rounded solutions

ILP optimal solution

infeasible !

LP optimal solutionc

- Useless rounded solutions

When the integer variables take small values at optimality. 

E.g., binary assignment variables  (job to machine) or 
activation variables (plants),...
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- Useful rounded solutions

When the integer variables take large values at optimality.

E.g., number of pieces to produce,…

Observation: It also depends on the unit costs (coefficients of the 
objective function).
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Example 1: Knapsack problem

n objects  j = 1,…, n 

pj profit (value) of object j

vj volume (weight) of object j

b maximum knapsack capacity.

Determine a subset of objects that maximizes the total profit, while 
respecting the knapsack capacity.
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Wide range of direct and indirect applications:
- loading (containers, vehicles, CDs,…),
- investments (pj = expected return, vj = amount to invest, 

available capital),
- as a suproblem…




n

1j
 max jj xp

bxv jj 


n

1j
 

xj {0,1}     j

xj =
1     j-th object is selected

0     otherwise
Variables:
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Example 2: Assignment problem

m machines i = 1,…, m

n jobs j = 1,…, n

cij cost of assigning job j to machine i

Determine an assignment of the jobs to the machines so as to 
minimize the total cost, while assigning at least one job per 
machine and at most one machine for each job.

Assumption: n > m
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Variables: xij =
1    machine i execute job j
0    otherwise

 
 

m

i

n

j1 1
min cij xij




m

1i

xij ≤ 1  j = 1,…, n (at most one machine 
for each job)

xij {0,1}     i, j

(at least one job for each 
machine)

xij ≥ 1  i = 1,…, m


n

j 1
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Example 3: Transportation problem (single product)

m production plants i = 1,…, m
n clients j = 1,…, n
cij transportation cost of one unit of product from plant 

i to client j
pi production capacity of plant i
dj demand of client j 
qij maximum amount to be transported from plant i to 

client j

Determine a transportation plan that minimizes total costs while 
satisfying plant capacitiy and client demands.
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
 

m

i

n

j
ijij xc

1 1
min













m

i
jij

n

j
iij

dx

px

1

1
 i = 1,…, m

 j = 1,…, n

(plant capacity)

(client demand)

Variables:  xij = amount transported from plant i to client j





n

j
j

m

i
i dp

11
   Assumption:

0 ≤ xij ≤ qij  i, j (transportation capacity)
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Property of transportation and assignment problems:

Optimal solution of the linear relaxation ≡ optimal solution of the 
ILP !

Theorem: If in a Transporation problem the right hand side terms 
are integer, all the basic feasible solutions (vertices) of its linear 
relaxation are integer.

• In transportation problem, special (mn+n+m)(mn) integer 
matrix A of the contraints: aij {-1, 0, 1} with exactly three 
nonzero coefficients per column.

• Right hand side vector b has all integer components.
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Optimal solution of the linear relaxation:

 

T

mm1m

m111
1

B
1B






















...
.........

...

det

,

where ij = (-1)i+j det(Mij)       with Mij square sub-matrix  
obtained from B by eliminating 
row i and column j.

B integer  ij integer

If det(B) = ±1   B-1 integer   x* integer.

In fact it can be proved that A is totally unimodular, that is                   
det(Q) = {-1,0,1}         squared sub-matrix Q of A.

x* = 













0

-1bB
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Example 4: Scheduling problem

m machines k = 1,…, m
n jobs j = 1,…, n\
For each job j, deadline dj

pjk = processing time of job j on machine k (may be = 0)

Determine an optimal sequence in which to process the jobs so as to 
minimize the total completion time while satisfying the deadlines.

Assumption: Each job must be processed once on each machine 
following the order of the machine indices 1, 2, …, m.
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tjk = time at which the processing of job j starts on machine k

t =  upper bound on the completion time of all jobs

yijk =
1 if job i preceeds job j on machine k

0 otherwise

Parameter    M ≔ 


n

1j
jd

Variables:
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min   t

tjm + pjm ≤ t j (t is upper bound on overall completion time)

tjm + pjm ≤ dj j (satisfy deadlines)

tik + pik ≤ tjk + M (1-yijk)      i,j,k i < j (*)

tjk + pjk ≤ tik + M yijk i,j,k i < j (**)

tjk + pjk ≤ tj,k+1 j,k = 1,…, m-1

t ≥ 0, tjk ≥ 0    j,k

yijk ∈ {0,1}     i,j,k

(job processing order)

 mixed ILP
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(*) and (**) make sure that 2 jobs are not simultaneously 
processed on the same machine

(*) active when yijk = 1 (i preceeds j on machine k) and 
ensures that i is completed before j starts (on k)

(**) active when yijk = 0 (j preceeds i on machine k) and 
ensures that j is completed before i starts (on k).

The ILP formulation can be easily extended to the case where each 
job j must be processed on m machines (or on a subset of them) 
according to a different order.
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Most ILP problems are NP-hard.

∄ efficient algorithms to solve them and the existence of a 
polynomial time algorithm for any one would imply P = NP !

extremely unlikely

Type of methods

• implicit enumeration

• cutting planes

• heuristic algorithms (“greedy”, local search,…) 

approximate methods (local optimum)

exact methods (global optimum)
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Implicit enumeration methods explore all feasible solutions 
explicitly or implicitly.

• “Branch and Bound” method

• Dynamic programming (see optimal paths in acyclic graphs)


