Chapter 2: Graph and network optimization

Many decision-making problems can be formulated in terms of graphs and networks.

Examples:

- transportation and distribution problems,
- network design (communication, electrical,..),
- location problems (services and facilities),
- project planning, resource management,
- timetable scheduling,
- production planning,...

2.1 Graphs and algorithms

2.1.1 Graphs

Model:

A <u>graph</u> G = (N, E) which consists of a set $N = \{1, 2, 3, 4, 5\}$ of <u>nodes</u> (vertices) and a set $E = \{[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 5], [3, 4], [3, 5], [4, 5]\} \subseteq N \times N$ of <u>edges</u> connecting them.

[,] indicates an unordered pair of nodes

Definitions

Two nodes are *adjacent* if they are connected by an edge.

An edge *e* is *incident* in a node *v* if *v* is an endpoint of *e*.

nodes 1 and 2 are adjacent

edge [1,5] is incident in nodes 1 and 5

The <u>*degree*</u> of a node is the number of incident edges. Example: node 1 has degree 4, node 4 has degree 3.

Given a graph G=(N, E) with n = |N| and m = |E|

A sequence of consecutive edges $[v_1, v_2], [v_2, v_3], \dots, [v_{k-1}, v_k]$ is a <u>path</u> which connects nodes v_1 and v_k

 $v_i, v_j \in N$ are <u>connected</u> if there exists a path connecting them

G = (N, E) is <u>connected</u> if v_i, v_j are connected $\forall v_i, v_j \in N$

E. Amaldi – Foundations of Operations Research – Politecnico Milano

If some connections can be travelled only in one direction:

<u>Directed graph</u> G = (N, A), where A is a set of ordered pairs of nodes (v_i, v_j) called <u>arcs</u>

A sequence of consecutive arcs (v_1, v_2) , (v_2, v_3) ,..., (v_{k-1}, v_k) is a <u>directed</u> <u>path</u> from v_1 to v_k

A <u>cycle</u> (<u>circuit</u>) is a (directed) path with $v_k = v_1$

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Given an undirected *G* and a subset of nodes $S \subset N$, the <u>*cut*</u> induced by *S* denoted by $\delta(S)$, is the <u>subset of edges</u> with an endpoint in *S* and the other endpoint in $N \setminus S$.

 $\delta(S) = \{ [v,w] \in E : v \in S, w \in N \setminus S \text{ or } w \in S, v \in N \setminus S \}$

E. Amaldi – Foundations of Operations Research – Politecnico Milano 11

Given directed G = (N, A) and a subset of nodes $S \subset N$,

the *outgoing cut* induced by S : $\delta^+(S) = \{ (v, w) \in A : v \in S, w \in N \setminus S \}$

the *incoming cut* induced by *S* :

 $\delta^{-}(S) = \{ (v, w) \in A : w \in S, v \in N \setminus S \}$

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Model for (in)compatibility relations

3 tasks and 2 engineers

$$i \qquad j \qquad N_2 = N \setminus N_1$$

$$N_1 \qquad N_2 = N \setminus N_1$$

Example

edge [*i*, *j*] indicates that task *i* can be executed by engineer *j*

Definition: *G* is <u>*bipartite*</u> if there exists a partition (N_1, N_2) of *N* such that no edge connects nodes in the same N_i (i = 1, 2).

Definiton: *G* is <u>complete</u> if $E = \{ [v_i, v_j] : v_i, v_j \in N, i \le j \}$.

For any graph G with n nodes, the number of edges satisfies:

- $m \le \frac{n(n-1)}{2}$ if *G* undirected
- $m \le n(n-1)$ if *G* directed.

In both cases, we have equality for complete graphs.

Model for precedence constraints between entities

A project is composed of *n* activities $\{a_i\}_{1 \le i \le n}$ with *m* precedence relations between pairs of activities $a_i \prec a_j$ (a_j cannot start before a_i is completed).

Model 1: directed graph

Model 2: directed graph

node \leftrightarrow activity arc \leftrightarrow precedence arc \leftrightarrow activity node \leftrightarrow outgoing activities can start when all incoming activities are completed

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Graph representation

A graph with *n* nodes and *m* arcs is <u>dense</u> if $m \approx n^2$ and <u>sparse</u> if $m \ll n^2$.

Definitions: (similar for undirected graphs)

• For dense directed graphs, *n×n* <u>adjacency matrix</u> :

 $a_{ij} = 1$ if $(i,j) \in A$ and $a_{ij} = 0$ otherwise.

• For sparse directed graphs, *list of successors* or predecessors

2.1.2 Graph reachability problem

Given a directed graph G = (N, A) and a node *s*, determine all the nodes that are reachable from *s*.

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Devise an (efficient) <u>algorithm</u> that allows to find all nodes reachable from *s*.

G = (N, A) with n = |N| and m = |A|, described by the successor lists, and a node *s*.

Subset $M \subseteq N$ of nodes of *G* reachable from *s*.

We use a "queue" *Q* containing the nodes reachable from *s* and not yet processed (First-In First-Out policy).

Subset $M = \{1, 2, 4, 5\}$ of nodes that have been labeled is the subset of nodes reachable from s = 1.

Observation: No arcs exit *M* and enter $N \setminus M$!

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Pseudocode for the graph reachability algorithm

output

Subset of nodes *M* (reachable from *s*)

```
BEGIN

Q := {s}; M := Ø;

WHILE Q \neq Ø D0  /* process a node h \in Q */

Select a node h \in Q e set Q := Q \ {h};

M := M \cup {h};  /* label h */

FOR EACH j \in S(h) D0

IF j \notin M AND j \notin Q THEN Q := Q \cup {j} END-IF

END-FOR

END-WHILE

END
```

FIFO queue $Q \Rightarrow$ breadth-first search node exploration.

The algorithm (exploration) stops because $\delta^+(M) = \emptyset$, $\delta^-(M)$ is the set of arcs with head in M and tail not in M.

Observation: $\delta^+(M) = \emptyset$ certifies that the algorithm is correct.

2.1.3 Complexity of algorithms

<u>Definition</u>: An <u>*algorithm*</u> for a problem is a sequence of instructions that allows to solve any of its instances.

The execution time of an algorithm depends on

- the instance
- the computer.

We want to evaluate the complexity of the algorithm as a function of the *size of the instance* (e.g., n or m) independently from the hardware.

Therefore we consider the number of <u>elementary operations</u> (e.g., arithmetic operations, comparisons, memory accesses...)

we assume they all have the same cost

Examples:

- 1) Dot product of $\underline{a}, \underline{b} \in \mathbb{R}^n$ requires *n* multiplications and *n*-1 additions $\Rightarrow 2n-1$ elementary operations.
- 2) Given two $n \ge n$ matices A and B, the product AB requires $(2n-1)n^2$ elementary operations.

Since it is usually hard to determine the exact number of elementary operations (as a function of the instance size), we consider

the asymptotic number of elementary operations (speed of growth) in the worst case (for the worst instances).

We look for a function f(n) which is (asymptotically) an upper bound on the number of elementary operations needed to solve every instance of size at most n.

Big-O notation

Definition: A function f(n) is <u>order of</u> g(n) and we write f(n) = O(g(n))

if $\exists c > 0$ such that $f(n) \le c g(n)$, for *n* sufficiently large.

We distinguish between algorithms whose order of complexity (in the worst case) is

• <u>polynomial</u>: $O(n^d)$ for a given constant d

N.B.: The algorithms with a higher order polynomial complexity (such as O(*n*⁸)) are not efficient in practice!

• *exponential*: $O(2^n)$

Polynomial versus exponential growth

Assume a 1 microsecond is needed per elementary operation

$f(I) = 2^{ I }$		$f(I) = I ^2$	I∕I −	
0.000002 secondi	•	0.000001 secondi	CONTRACT DA	
0.001 secondi		0.0001 secondi	10	
1 secondi		0.0004 secondi	20	
17.9 minuti		0.0009 secondi	30	
12.7 giorni		0.0016 secondi	40	
35.7 anni		0.0025 secondi	50	
366 secoli		0.0036 secondi	60	

Example: complexity of the reachability algorithm

At each iteration of the cycle WHILE:

- select one node $h \in Q$, extract it from Q and insert it in M,
- for all nodes *j* directly reachable from *h* and not already in *M* or *Q*, insert *j* in *Q*.

Since each node h is inserted in Q at most once and each arc (h, j) is considered at most once, we have

overall complexity O(n + m), where n = |N| and m = |A|.

Observation: for dense graphs $m = O(n^2)$

2.1.4 Subgraphs, trees and spanning trees

Example

Design a communication network that connects n cities.

<u>Model</u>: Undirected graph G = (N, E) with n = |N|, m = |E|

Definition: G' = (N', E') is a <u>subgraph</u> of G = (N, E) if

- $N' \subseteq N$
- $E' \subseteq E$ only contains edges with both endpoints in N'.

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Desired properties of a communication network:

- Since every pair of cities must be connected, N' = N and G' must be a <u>connected subgraph</u> of G.
- 2) Since we do not want to waste resources, *G*' must be an <u>acyclic</u> <u>subgraph</u> (without cycles) of *G*.

Definitions:

• A <u>tree</u> $G_T = (N', T)$ of G is a subgraph of G that is both <u>connected</u> and <u>acyclic</u>.

• $G_T = (N', T)$ is a <u>spanning tree</u> of G = (N, E) if it contains all the nodes of G (namely N' = N).

• The *leaves* of a tree are the nodes of degree 1.

Properties of trees

Every tree *T* with $n \ge 2$ nodes has at least 2 = 1 leaves.

By contradiction: Suppose T has 0 or 1 leaf.

Travel along its edges starting from the leaf (if any) or from any node, using each edge at most once.

Since a tree has no cycles, the nodes cannot be visited twice.

If there is no (other) leaf, we can leave each node along an unused incident edge.

 \Rightarrow an infinite path in a finite graph!

- *Inductive base* : true for n = 1 (1 node and 0 edges)
- *Inductive step* : if it true for the trees with n nodes, it is also true for those with n + 1 nodes.

Consider a tree T_1 with n + 1 nodes.

By deleting one leaf and its incident edge, we obtain a tree T_2 with n nodes.

Since by assumption Property 2) holds for T_2 , T_2 has n-1 edges.

 \Rightarrow T_1 , which has one more edge than T_2 , has *n* edges.

E. Amaldi – Foundations of Operations Research – Politecnico Milano

Any pair of nodes is connected via a <u>unique path</u>.

...otherwise there would be a cycle!

By adding to a tree any edge that it does not contain, we <u>create</u> a <u>unique cycle</u>.

...consisting of the path of Property 3) and the new edge.

Exchange property

Let $G_T = (N, T)$ be a spanning tree of G = (N, E)

Consider an edge $e \notin T$

Property 5

and the unique cycle C of $T \cup \{e\}$ (Property 4).

For each edge $f \in C \setminus \{e\}$, the subgraph $T \cup \{e\} \setminus \{f\}$ is also a spanning tree of *G*.

E. Amaldi – Foundations of Operations Research – Politecnico Milano