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Chapter 2: Graph and network optimization
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Examples:

- transportation and distribution problems,

- network design (communication, electrical,..),

- location problems (services and facilities),

- project planning, resource management, 

- timetable scheduling,

- production planning,...

Many decision-making problems can be formulated in terms of 
graphs and networks.



E. Amaldi – Foundations of Operations Research – Politecnico Milano 3

2.1  Graphs and algorithms
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Model:
A graph G = (N, E) which consists of a set  N={1,2,3,4,5} of nodes (vertices) 
and a set   E={[1,2],[1,3],[1,4],[1,5],[2,3],[2,5],[3,4],[3,5],[4,5]} NN  of 
edges connecting them. 

Road network which connects n cities Example

1

5

2

3

4

city  node    

connection  edge

[ , ] indicates an unordered pair of nodes

2.1.1 Graphs

n=5
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Two nodes are adjacent if they are connected by an edge. 

An edge e is incident in a node v if v is an endpoint of e. 

nodes 1 and 2 are adjacent

edge [1,5] is incident in nodes 1 and 5

The degree of a node is the number of incident edges.
Example: node 1 has degree 4, node 4 has degree 3.
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4

G

Definitions 
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N  = { v1 , v2 , v3 , v4 }

E = { [v1, v2], [v2, v3], [v2, v4], [v3, v4] }

v1

v2

v3 vk

A sequence of consecutive edges  [v1, v2], [v2, v3],…, [vk-1, vk] is a 
path which connects nodes v1 and vk

Given a graph  G=(N, E) with  n = |N| and  m = |E|

v4

v2

v3v1

n=4
m=4
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vi

vj

vi, vj N are connected if there exists a path connecting them

G = (N, E) is  connected if  vi, vj are connected  vi, vj  N
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4 connected

1
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4 not connected
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If some connections can be travelled only in one direction:  

Directed graph G = (N, A), where A is a set of ordered pairs of nodes 
(vi, vj) called arcs

vi
vj (vi, vj) A

1

5

2

3

4

G
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v1

v2

vk

A sequence of consecutive arcs (v1, v2), (v2, v3),…,  (vk-1, vk) is a directed 
path from v1 to vk

1

5

2

3

4

directed path from 1 to 2
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v1 = vk 

v2

v3

vk-1

A cycle ( circuit ) is a ( directed ) path with vk = v1

1

5

2

3

4

cycle C
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Example
1 32

54 6S

N  \ S

(S) = (N\S) 

(S) = { [v,w]E : vS, wN \ S or wS, vN \ S }

Given an undirected G and a subset of nodes S  N, the cut induced by S 
denoted by (S), is the subset of edges with an endpoint in S and the other 
endpoint in N \ S.
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Example

Given directed  G = (N, A)  and a subset of nodes S  N,   

1 32

54 6S

N  \ S

the outgoing cut induced by S : 
+(S) = { (v, w)  A : v  S, w  N \ S }

the incoming cut induced by S : 
-(S) = { (v, w)  A : w  S, v  N \ S}
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N 1 N2

N2 = N \ N 1

Definition: G is bipartite if there exists a partition (N1, N2) of  N such that 
no edge connects nodes in the same Ni (i = 1, 2 ). 

Example 3 tasks and 2 engineers  

Model for (in)compatibility relations 

edge [i, j] indicates that task i
can be executed by engineer j

i
j
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( 1)
2

n nm 


Property

Defintion: G  is complete if  E = { [vi, vj] : vi, vj  N, i  j }.

n=4 m=6

In both cases, we have equality for complete graphs. 

For any graph G with n nodes, the number of edges satisfies:

• if G undirected

• m n(n-1)      if G directed.
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Model for precedence constraints between entities

A project is composed of n activities {ai}1 i  n with m precedence 
relations between pairs of activities  a i aj ( aj cannot start before ai is 
completed ). 



Model 1: directed graph 

node  activity
arc  precedence

ai    aj
ak  aji

jk


Model 2: directed graph

arc   activity
node   outgoing activities can start 

when all incoming activities 
are completed

ai aj
ak aji

jk



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Graph representation

S(1) = { 2, 4 }

S(2) = { 3 }

S(3) = { 4 }

S(4) = { 2 }

1

3

2

4

• For sparse directed graphs, list of successors or predecessors

Definitions:    (similar for undirected graphs)

• For dense directed graphs, nn adjacency matrix :

aij = 1 if (i,j)  A  and  aij= 0 otherwise.

A graph with n nodes and m arcs is dense if m ൎ n2 and sparse if m ≪ n2. 



E. Amaldi – Foundations of Operations Research – Politecnico Milano 17

2.1.2  Graph reachability problem

Problem Given a directed graph G = (N, A) and a node s, determine all 
the nodes that are reachable from s.

1 32

54 6

S(1) = { 2, 4 }

S(2) = { 5 }

S(3) = { 5, 6 }

S(4) = { 2 }

S(5) = { 4 }

S(6) = { 2 }

Successor lists :
s
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input G = (N, A) with n = |N| and m = |A|, described by the 
successor lists, and a node s.

output Subset M  N of nodes of G reachable from s.

Devise an (efficient) algorithm that allows to find all nodes reachable 
from s.

We use a “queue” Q containing the nodes reachable from s and not yet 
processed (First-In First-Out policy).
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1 32

54 6

Q = { 1 }
Q = { 2, 4 }

Q = { 4, 5 }

Q = { 5 }

Q = 

M

Subset M = { 1, 2, 4, 5 } of nodes that have been labeled is the subset of 
nodes reachable from s = 1.

Observation: No arcs exit M and enter N \ M !

Example

Q = { 1 }   and   M = Ø 
and   M = {1} 
and  M = M  {2}

and  M = M  {4}

and  M = M   {5}
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BEGIN
Q := {s}; M := ;

WHILE Q   DO   /* process a node h  Q */

Select a node h  Q e set Q := Q \ {h};

M := M  {h};    /* label h */

FOR EACH j  S(h) DO
IF j  M AND j  Q THEN Q := Q  {j} END-IF

END-FOR
END-WHILE

END

Pseudocode for the graph reachability algorithm

FIFO queue Q  breadth-first search node exploration.

Subset of nodes M (reachable from s)output
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1 32

54 6

M

N  \ M

-(M) is the set of arcs with head in M and tail not in M.

The algorithm (exploration) stops because  +(M)=Ø,

Example

Observation+(M)= certifies that the algorithm is correct.
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2.1.3 Complexity of algorithms

Definition: An algorithm for a problem is a sequence of instructions that 
allows to solve any of its instances.

The execution time of an algorithm depends on

• the instance

• the computer.

We want to evaluate the complexity of  the algorithm as a function of the 
size of the instance (e.g., n or m) independently from the hardware.
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Therefore we consider the number of elementary operations (e.g., arithmetic 
operations, comparisons, memory accesses...)

we assume they all have the same cost

2)   Given two nxn matices A and B, the product AB requires (2n-1)n2  

elementary operations.

Examples:  

1) Dot product of a, b  Rn requires n multiplications and n-1 additions
 2n-1 elementary operations.
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Since it is usually hard to determine the exact number of elementary 
operations (as a function of the instance size), we consider  

the asymptotic number of elementary operations (speed of growth) in the 
worst case (for the worst instances).

We look for a function f (n) which is (asymptotically) an upper bound on 
the number of elementary operations needed to solve every instance of 
size at most n.
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Examples 3n3 + n2 + 10

if   c > 0  such that   f (n)  c g(n), for n sufficiently large.

asymptotically

Definition:  A function f (n) is order of g(n) and we write         
f (n) = O( g(n) ) 

n0

c·g
f

Big-O notation 

m = n(n-1)/2

= O(n3)

= O(n2)
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We distinguish between algorithms whose order of complexity (in the 
worst case) is

• polynomial:  O( nd )  for a given constant d

• exponential:  O( 2n )

N.B.: The algorithms with a higher order 
polynomial complexity (such as O(n8) ) are not 

efficient in practice!
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Polynomial versus exponential growth
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Assume a 1 microsecond is needed per elementary operation
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Example: complexity of the reachability algorithm

At each iteration of the cycle  WHILE:

• select one node h  Q, extract it from Q and insert it in M,

• for all nodes j directly reachable from h and not already in M or Q, 
insert  j in Q.

overall complexity O(n + m), where n =|N| and m =|A|.

Observation:  for dense graphs  m = O(n2)

Since each node h is inserted in Q at most once and each arc (h, j) is 
considered at most once, we have 
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Example Design a communication network that connects n cities.

The edges represent the 
possible links

2.1.4  Subgraphs, trees and spanning trees

1

5

2

3

4

Model: Undirected graph G = (N, E) with n =|N|, m =|E|

n=5
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Definition: G’ = (N’, E’) is a subgraph of G = (N, E) if 
• N’  N
• E’  E  only contains edges with both endpoints in N’.

1

5

2

3

4

G=(N, E)

1

5

2

3

G’=(N’, E’) N’ = {1,2,3,5}  N

E’ = {[1,2],[1,5],[2,3],[2,5],[3,5]}  E
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1) Since every pair of cities must be connected, N’ = N and G’ must 
be a connected subgraph of G.

2) Since we do not want to waste resources, G’ must be an acyclic 
subgraph (without cycles) of G.

Definitions: 

• A tree GT = (N’, T) of G is a subgraph of G that is both connected
and acyclic.

Desired properties of a communication network:

1

5

2

3
GT T={[1,5],[2,5],[3,5]}
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• GT = (N’, T) is a spanning tree of G = (N, E) if it contains all the 
nodes of G (namely N’ = N ).

1

5

2

3

4

GT

• The leaves of a tree are the nodes of degree 1.

1 2

3

4
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Properties of trees

Property 1 Every tree T with n  2 nodes has at least 2 leaves.

Proof By contradiction: Suppose T has 0 or 1 leaf. 

Travel along its edges starting from the leaf (if any) or from any 
node, using each edge at most once. 

Since a tree has no cycles, the nodes cannot be visited twice. 

If there is no (other) leaf, we can leave each node along an 
unused incident edge.

 an infinite path in a finite graph!



E. Amaldi – Foundations of Operations Research – Politecnico Milano 35

Property 2 Every tree with n nodes has n – 1 edges.

Proof By induction:

• Inductive base : true for n = 1 (1 node and 0 edges) 

• Inductive step : if it true for the trees with n nodes, it is also 
true for those with n + 1 nodes.

Consider a tree T1 with n + 1 nodes.

By deleting one leaf and its incident edge, we obtain a tree T2 with n
nodes.

Since by assumption Property 2) holds for T2,  T2 has n –1 edges.

 T1, which has one more edge than T2, has n edges.
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Property 3 Any pair of nodes is connected via a unique path.

...otherwise there would be a cycle!

Property 4 By adding to a tree any edge that it does not contain, we 
create a unique cycle.

...consisting of the path of Property 3) and the new edge.

1

5

2

3

1

5

2

3
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Property 5 Exchange property 

Let GT = (N, T ) be a spanning tree of G = (N, E)

1

5

2

3

4

GT
e

Consider an edge e  T

f

For each edge f  C \ {e} , the subgraph T  {e} \ {f } is also a 
spanning tree of G.

1

5

2

3

4
T  {e} \ {f }

C

and the unique cycle C of T   {e}    (Property 4).


