Chapter 2: Graph and network optimization

Many decision-making problems can be formulated in terms of graphs and networks.

Examples:

- transportation and distribution problems,
- network design (communication, electrical,..),
- location problems (services and facilities),
- project planning, resource management,
- timetable scheduling,
- production planning,...

2.1 Graphs and algorithms

2.1.1 Graphs

Example Road network which connects n cities

Model:

A graph $G=(N, E)$ which consists of a set $N=\{1,2,3,4,5\}$ of nodes (vertices) and a set $E=\{[1,2],[1,3],[1,4],[1,5],[2,3],[2,5],[3,4],[3,5],[4,5]\} \subseteq N \times N$ of edges connecting them.

Definitions

Two nodes are adjacent if they are connected by an edge.
An edge e is incident in a node v if v is an endpoint of e.

nodes 1 and 2 are adjacent edge [1,5] is incident in nodes 1 and 5

The degree of a node is the number of incident edges.
Example: node 1 has degree 4, node 4 has degree 3.

Given a graph $G=(N, E)$ with $n=|N|$ and $m=|E|$

A sequence of consecutive edges $\left[v_{1}, v_{2}\right],\left[v_{2}, v_{3}\right], \ldots,\left[v_{k-1}, v_{k}\right]$ is a path which connects nodes v_{1} and v_{k}

$v_{i}, v_{j} \in N$ are connected if there exists a path connecting them

$G=(N, E)$ is connected if v_{i}, v_{j} are connected $\forall v_{i}, v_{j} \in N$

If some connections can be travelled only in one direction:

Directed graph $G=(N, A)$, where A is a set of ordered pairs of nodes $\left(v_{\mathrm{i}}, v_{\mathrm{j}}\right)$ called $\underline{\operatorname{arcs}}$

A sequence of consecutive arcs $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k-1}, v_{k}\right)$ is a directed path from v_{1} to v_{k}

directed path from 1 to 2

A cycle (circuit) is a (directed) path with $v_{k}=v_{1}$

cycle C

Given an undirected G and a subset of nodes $S \subset N$, the cut induced by S denoted by $\delta(S)$, is the subset of edges with an endpoint in S and the other endpoint in $N \backslash S$.

$$
\delta(S)=\{[v, w] \in E: v \in S, w \in N \backslash S \text { or } w \in S, v \in N \backslash S\}
$$

Example

E. Amaldi - Foundations of Operations Research - Politecnico Milano

Given directed $G=(N, A)$ and a subset of nodes $S \subset N$, the outgoing cut induced by S :

$$
\delta^{+}(S)=\{(v, w) \in A: v \in S, w \in N \backslash S\}
$$

the incoming cut induced by S :

$$
\delta^{-}(S)=\{(v, w) \in A: w \in S, v \in N \backslash S\}
$$

E. Amaldi - Foundations of Operations Research - Politecnico Milano

Model for (in)compatibility relations

Example 3 tasks and 2 engineers

edge $[i, j]$ indicates that task i can be executed by engineer j

Definition: G is bipartite if there exists a partition $\left(N_{1}, N_{2}\right)$ of N such that no edge connects nodes in the same $N_{i}(i=1,2)$.

Defintion: G is complete if $E=\left\{\left[v_{i}, v_{j}\right]: v_{i}, v_{j} \in N, i \leq j\right\}$.

Property

For any graph G with n nodes, the number of edges satisfies:

- $m \leq \frac{n(n-1)}{2}$ if G undirected
- $m \leq n(n-1) \quad$ if G directed.

In both cases, we have equality for complete graphs.

Model for precedence constraints between entities

A project is composed of n activities $\left\{a_{i}\right\}_{1 \leq i \leq n}$ with m precedence relations between pairs of activities $\mathrm{a}_{\mathrm{i}} \prec \mathrm{a}_{\mathrm{j}} \quad$ (a_{j} cannot start before a_{i} is completed).

$$
\begin{gathered}
\text { node } \leftrightarrow \text { activity } \\
\text { arc } \leftrightarrow \text { precedence }
\end{gathered}
$$

$$
\begin{gathered}
\text { Model 2: directed graph } \\
\text { node } \leftrightarrow \underset{\substack{\text { outgoing activities can stari } \\
\text { when all incoming activiti } \\
\text { are completed }}}{\substack{j}} \begin{array}{l}
\text { activity } \\
\mathrm{a}_{\mathrm{i}} \prec \mathrm{a}_{\mathrm{j}} \\
\mathrm{a}_{\mathrm{k}} \prec \mathrm{a}_{\mathrm{j}}
\end{array}
\end{gathered}
$$

Graph representation

A graph with n nodes and m arcs is dense if $m \approx n^{2}$ and sparse if $m \ll n^{2}$.
Definitions: (similar for undirected graphs)

- For dense directed graphs, $n \times n$ adjacency matrix :

$$
\mathrm{a}_{\mathrm{ij}}=1 \text { if }(\mathrm{i}, \mathrm{j}) \in A \text { and } \mathrm{a}_{\mathrm{ij}}=0 \text { otherwise. }
$$

- For sparse directed graphs, list of successors or predecessors

E. Amaldi - Foundations of Operations Research - Politecnico Milano

2.1.2 Graph reachability problem

Problem

Given a directed graph $G=(N, A)$ and a node s, determine all the nodes that are reachable from s.

Devise an (efficient) algorithm that allows to find all nodes reachable from s.
input
$G=(N, A)$ with $n=|N|$ and $m=|A|$, described by the successor lists, and a node s.
output
Subset $M \subseteq N$ of nodes of G reachable from s.

We use a "queue" Q containing the nodes reachable from s and not yet processed (First-In First-Out policy).

$$
\begin{align*}
& Q=\{1\} \text { and } M=\varnothing \\
& Q=\{\npreceq\} \text { and } M=\{1\} \\
& Q=\{\mathscr{Z} 4\} \text { and } M=M \cup\{2\} \\
& Q=\{\not \subset 5\} \text { and } M=M \cup\{4\} \\
& Q=\{\mathscr{Z}\} \text { and } M=M \cup\{5\} \\
& Q=\varnothing
\end{align*}
$$

Subset $M=\{1,2,4,5\}$ of nodes that have been labeled is the subset of nodes reachable from $s=1$.

Observation: No arcs exit M and enter $N \backslash M$!

Pseudocode for the graph reachability algorithm

output

Subset of nodes M (reachable from s)

```
BEGIN
    Q := {s}; M := \varnothing;
    WHILE Q # \varnothing DO /* process a node h \in Q */
        Select a node h \in Q e set Q := Q \ {h};
        M := M \cup {h}; /* label h */
        FOR EACH j }\inS(h) D
            IF j\not\inM AND j & Q THEN Q := Q \cup {j} END-IF
            END-FOR
    END-WHILE
END
```

FIFO queue $Q \Rightarrow$ breadth-first search node exploration.

Example

The algorithm (exploration) stops because $\delta^{+}(M)=\varnothing$,
$\delta^{-}(M)$ is the set of arcs with head in M and tail not in M .
Observation: $\delta^{+}(M)=\varnothing$ certifies that the algorithm is correct.

2.1.3 Complexity of algorithms

Definition: An algorithm for a problem is a sequence of instructions that allows to solve any of its instances.

The execution time of an algorithm depends on

- the instance
- the computer.

We want to evaluate the complexity of the algorithm as a function of the size of the instance (e.g., n or m) independently from the hardware.

Therefore we consider the number of elementary operations (e.g., arithmetic operations, comparisons, memory accesses...)

```
we assume they all have the same cost
```

Examples:

1) Dot product of $\underline{a}, \underline{b} \in R^{n}$ requires n multiplications and $n-1$ additions $\Rightarrow 2 n-1$ elementary operations.
2) Given two $n x n$ matices A and B, the product $A B$ requires $(2 n-1) n^{2}$ elementary operations.

Since it is usually hard to determine the exact number of elementary operations (as a function of the instance size), we consider
the asymptotic number of elementary operations (speed of growth) in the worst case (for the worst instances).

We look for a function $f(n)$ which is (asymptotically) an upper bound on the number of elementary operations needed to solve every instance of size at most n.

Big-O notation

Definition: A function $f(n)$ is order of $g(n)$ and we write

$$
f(n)=\mathrm{O}(g(n))
$$

if $\exists c>0$ such that $f(n) \leq c g(n)$, for n sufficiently large.

Examples

$$
\begin{array}{ll}
3 n^{3}+n^{2}+10 & =\mathrm{O}\left(n^{3}\right) \\
m=n(n-1) / 2 & =\mathrm{O}\left(n^{2}\right)
\end{array}
$$

We distinguish between algorithms whose order of complexity (in the worst case) is

- polynomial: $\mathrm{O}\left(n^{d}\right)$ for a given constant d
N.B.: The algorithms with a higher order polynomial complexity (such as $O\left(n^{8}\right)$) are not efficient in practice!
- exponential: $\mathrm{O}\left(2^{n}\right)$

Polynomial versus exponential growth

Assume a 1 microsecond is needed per elementary operation

$\|I\|$	$f(\|I\|)=\|I\|^{2}$	$f(\|I\|)=2^{\mid h I}$
1	0.000001 secondi	0.000002 secondi
10	0.0001 secondi	0.001 secondi
20	0.0004 secondi	1 secondi
30	0.0009 secondi	17.9 minuti
40	0.0016 secondi	12.7 giomi
50	0.0025 secondi	35.7 anni
60	0.0036 secondi	366 secoli

Example: complexity of the reachability algorithm

At each iteration of the cycle WHILE:

- select one node $h \in Q$, extract it from Q and insert it in M,
- for all nodes j directly reachable from h and not already in M or Q, insert j in Q.

Since each node h is inserted in Q at most once and each arc (h, j) is considered at most once, we have
overall complexity $O(n+m)$, where $n=|N|$ and $m=|A|$.

Observation: for dense graphs $m=O\left(n^{2}\right)$

2.1.4 Subgraphs, trees and spanning trees

Example
Design a communication network that connects n cities.

Model: Undirected graph $G=(N, E)$ with $n=|N|, m=|E|$

Definition: $G^{\prime}=\left(N^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(N, E)$ if

- $N^{\prime} \subseteq N$
- $E^{\prime} \subseteq E$ only contains edges with both endpoints in N^{\prime}.

Desired properties of a communication network:

1) Since every pair of cities must be connected, $N^{\prime}=N$ and G^{\prime} must be a connected subgraph of G.
2) Since we do not want to waste resources, G ' must be an acyclic subgraph (without cycles) of G.

Definitions:

- A tree $G_{T}=\left(N^{\prime}, T\right)$ of G is a subgraph of G that is both connected and acyclic.

$$
T=\{[1,5],[2,5],[3,5]\}
$$

- $G_{T}=\left(N^{\prime}, T\right)$ is a spanning tree of $G=(N, E)$ if it contains all the nodes of G (namely $N^{\prime}=N$).

- The leaves of a tree are the nodes of degree 1.

Properties of trees

Property 1

Every tree T with $n \geq 2$ nodes has at least 2 leaves.

By contradiction: Suppose T has 0 or 1 leaf.
Travel along its edges starting from the leaf (if any) or from any node, using each edge at most once.

p
Since a tree has no cycles, the nodes cannot be visited twice.

If there is no (other) leaf, we can leave each node along an unused incident edge.
\Rightarrow an infinite path in a finite graph!

Every tree with n nodes has $\underline{n-1}$ edges.

Proof By induction:

- Inductive base : true for $n=1$ (1 node and 0 edges)
- Inductive step : if it true for the trees with n nodes, it is also true for those with $n+1$ nodes.

Consider a tree T_{1} with $n+1$ nodes.
By deleting one leaf and its incident edge, we obtain a tree T_{2} with n nodes.

Since by assumption Property 2) holds for T_{2}, T_{2} has $n-1$ edges.
$\Rightarrow T_{1}$, which has one more edge than T_{2}, has n edges.

Property 3 Any pair of nodes is connected via a unique path.

...otherwise there would be a cycle!

Property $4 \quad$ By adding to a tree any edge that it does not contain, we create a unique cycle.

...consisting of the path of Property 3) and the new edge.
E. Amaldi - Foundations of Operations Research - Politecnico Milano

Let $G_{T}=(N, T)$ be a spanning tree of $G=(N, E)$
Consider an edge $e \notin \mathrm{~T}$ and the unique cycle C of $T \cup\{e\} \quad$ (Property 4).

For each edge $f \in C \backslash\{e\}$, the subgraph $T \cup\{e\} \backslash\{f\}$ is also a spanning tree of G.

E. Amaldi - Foundations of Operations Research - Politecnico Milano

