2.4 <u>Network flows</u>

Problems involving the distribution of a given "product" (e.g., water, gas, data,...) from a set of "sources" to a set of "users" so as to optimize a given objective function (e.g., amount of product, total cost,...).

Many direct and indirect applications

- telecommunication
- transportation (public, freight, railway, air,...)
- logistics
- •…

2.4.1 Maximum flow problem

Definitions:

• A <u>network</u> is a directed and connected graph G = (V, A) with a source $s \in V$ and a sink $t \in V$ with $s \neq t$, and a capacity $k_{ij} \ge 0$ for each arc $(i, j) \in A$.

• A <u>feasible flow x</u> from s to t is a vector $\underline{x} \in \mathbb{R}^m$ with a component x_{ij} for each arc $(i,j) \in A$ satisfying the capacity constraints

$$0 \le x_{ij} \le k_{ij} \qquad \forall (i,j) \in A$$

Flow <u>x</u> of value $\varphi = 1$

and the flow balance constraints at each intermediate node $h \in V$ ($h \neq s, t$)

 $\sum_{(i,h)\in\delta^{-}(h)} x_{ih} = \sum_{(h,j)\in\delta^{+}h} x_{hj} \quad \forall h\in V\setminus\{s,t\}$

(amount entering in h = amount exiting from h)

• The value of flow x:
$$\varphi = \sum_{(s,j)\in\delta^+(s)} x_{sj}$$
 with $\delta^+(s) = \{(s,j): (s,j)\in A\}$

• Given a network and a feasible flow <u>x</u>,

an arc
$$(i, j) \in A$$
 is
$$\begin{cases} \underline{saturated} & \\ \underline{empty} & \\ x_{ij} = 0 \end{cases}$$

Given a network G = (V, A) with an integer capacity k_{ij} for each arc $(i,j) \in A$, and nodes $s, t \in V$, determine a <u>feasible</u> <u>flow</u> from *s* to *t* of <u>maximum value</u>.

Observation: If there are many sources/sinks with a unique type of product :

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Linear programming model

 $max \ \phi$

s.t.

$$\sum_{(h,j)\in\delta^{+}(h)} x_{ij} - \sum_{(i,h)\in\delta^{-}(h)} x_{ih} = \begin{pmatrix} \varphi & \text{if } h = s & \longleftarrow \text{ amount exiting from } s \\ -\varphi & \text{if } h = t \\ 0 & \text{otherwise} \end{pmatrix}$$

$$0 \le x_{ij} \le k_{ij} \quad \forall \ (i,j) \in A$$

$$x_{ij} \in \mathbb{R}, \ \varphi \in \mathbb{R}$$

where φ denotes the value of the feasible flow <u>x</u>

2.4.2 Cuts, feasible flows and weak duality

Definitions:

• A <u>cut</u> separating s from t is $\delta(S)$ of G with $s \in S \subset V$ and $t \in V \setminus S$.

Number of cuts separating *s* from *t*? 2^{n-2} with n=|V|

• <u>*Capacity*</u> of the <u>*cut*</u> $\delta(S)$ induced by S: $k(S) = \sum_{(i,j) \in S^{\pm}(S)} k_{ij}$

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

• Given a feasible flow <u>x</u> from s to t and a cut $\delta(S)$ with $s \in S$ and $t \notin S$, the <u>value of</u> the feasible <u>flow x through</u> the <u>cut</u> $\delta(S)$ is

$$\varphi(S) = \sum_{(i,j)\in\delta^+(S)} x_{ij} - \sum_{(i,j)\in\delta^-(S)} x_{ij}$$

With this notation the value of the flow <u>x</u> is $\varphi(\{s\})$.

Given a feasible flow <u>x</u> from s to t, for each cut $\delta(S)$ separating s from t, we have

 $\varphi(S) = \varphi(\{s\}).$

Implied by the flow balance equations $\forall v \in V \setminus \{s, t\}.$

For each feasible flow \underline{x} from *s* to *t* and each cut $\delta(S)$, with $S \subseteq V$, separating *s* from *t*, we have

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

<u>Consequence</u>: If $\varphi(S) = k(S)$ for a subset $S \subseteq V$ with $s \in S$ and $t \notin S$, then \underline{x} is a flow of maximum value and the cut $\delta(S)$ is of minimum capacity.

The property $\varphi(S) \le k(S)$ \forall feasible flow <u>x</u> and \forall cut $\delta(S)$ separating *s* from *t*, expresses a <u>weak duality relationship</u> between the two problems:

Primal problem: Given G = (V, A) with integer capacities on the arcs and $s, t \in V$, determine a <u>feasible flow</u> of <u>maximum value</u>.

Dual problem: Given G = (V, A) with integer capacities on the arcs and $s, t \in V$, determine a <u>cut</u> (separating *s* from *t*) of <u>minimum capacity</u>.

We shall see that such a relationship holds for any LP!

2.4.3 Ford-Fulkerson's algorithm

D. R. Fulkerson (1924-1976)

Idea: Start from a feasible flow \underline{x} and try to iteratively increase its value φ by sending, at each iteration, an additional amount of product along a(n undirected) path from *s* to *t* with a strictly positive residual capacity.

Can the value of the current feasible flow \underline{x} be increased?

If (i, j) is not saturated $(x_{ij} < k_{ij})$, we can increase x_{ij}

If (i, j) is not empty $(x_{ij} > 0)$, we can decrease x_{ij} while respecting $0 \le x_{ij} \le k_{ij}$

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

 $\phi(\{s\}) = 2$

We can send $\delta = 1$ additonal units of product from *s* to *t*: + δ along forward arcs

- δ along backward arcs

Rationale: The unit of product that was going from \bullet to \circ is redirected to *t* and the missing unit in \circ is supplied from *s*.

Definition: A path P from s to t is an <u>augmenting path</u> with respect to the current feasible flow \underline{x} if

 $x_{ij} < k_{ij}$ for all forward arc and $x_{ij} > 0$ for all backward arc.

Since the maximum additional amount of product that can be sent along the augmenting path $s - \circ - \bullet - t$

Given a feasible flow \underline{x} for G = (V, A), we construct the <u>residual</u> <u>network</u> $\overline{G} = (V, \overline{A})$ associated to \underline{x} , which accounts for all possible flow variations with respect to \underline{x} .

If $(i, j) \in A$ is not saturated, $(i, j) \in \overline{A}$ with $\overline{k_{ij}} = k_{ij} - x_{ij} > 0$. residual capacity If $(i, j) \in A$ is not empty, $(j, i) \in \overline{A}$ with $\overline{k_{ji}} = x_{ij} > 0$.

New feasible flow <u>x</u> of value $\varphi = 3 + \delta$ ($\delta = 1$)

At each iteration: To look for an augmenting path from *s* to *t* in *G*, we search for a path from *s* to *t* in \overline{G} .

If \exists an augmenting path from *s* to *t*, the current flow <u>x</u> is not optimal (of maximum value).

Example

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

19

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

(7) is not reachable from (1) (only (4) is reachable) \Rightarrow STOP

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

are <u>saturated</u> and all <u>entering</u> ones are <u>empty</u>

feasible flow \underline{x}_3 of value $\varphi_3 = 5$

Proposition: Ford-Fulkerson's algorithm is exact.

A feasible flow <u>x</u> is of maximum value $\Leftrightarrow t$ is not reachable from s in the residual network \overline{G} associated to <u>x</u>.

(\Rightarrow) If \exists an aumenting path, <u>x</u> is not optimal (of maximum value).

(⇐) If *t* is not reachable from *s*, ∃ cut of \overline{G} such that $\delta_{\overline{G}}^+(S^*) = \emptyset$ By definition of \overline{G} , we have $s \in S^* \subseteq V$

- every $(i,j) \in \delta_G^+(S^*)$ is saturated
- every $(i,j) \in \delta_G^-(S^*)$ is empty.

Weak duality: $\varphi(S) \le k(S)$ $\forall \underline{x} \text{ feasible}$ $\forall S \subseteq V, s \in S, t \notin S$

⇒ the feasible flow <u>x</u> is of <u>maximum value</u> and the <u>cut</u> induced by S^* , namely $\delta_G(S^*)$, is of <u>minimum capacity</u>.

The algorithm implies:

Observations:

- If all the capacities k_{ij} are integer ($\in \mathbb{Z}^+$), the flow <u>x</u> of maximum value has all x_{ij} <u>integer</u> and an <u>integer</u> value φ^* .
- Ford-Fulkerson's algorithm is <u>not greedy</u> (x_{ij} are also decreased).

Ford-Fulkerson's algorithm

```
Input G = (V, A), capacity k_{ij} > 0 \quad \forall (i, j) \in A, source s \in V, sink t \in V
```


Feasible flow <u>x</u> from s to t of maximum value φ^*

```
BEGIN
  x:=0; \u03c6:=0; optimum:=false; /* initialization */
  REPEAT
     Build residual network \overline{G} associated to x;
                                                                             m`
     Determine, if \exists, a path P from s to t in \overline{G};
     IF P does not exist THEN optimum := true;
     ELSE
       \delta := \min \{ \overline{k}_{ij} : (i,j) \in P \}; \phi := \phi + \delta;
                                                                         O(n)
       FOR EACH (i,j) \in P DO
          IF (i,j) is forward THEN x_{ij} := x_{ij} + \delta;
                                                                          \mathcal{I}(n)
          ELSE x_{ji} := x_{ji} - \delta; END-IF
     END-IF
                                       Maximum number of cycles?
  UNTIL optimum = true;
END
      E. Amaldi – Foundations of Operations Research – Politecnico di Milano
                                                                            26
```

Complexity

Since $\delta > 0$, the value φ increases at each iteration (cycle). If all k_{ij} are integer, \underline{x} and \overline{k}_{ij} integer and $\delta \ge 1 \Rightarrow$ at most φ^* increases.

 $\int \text{capacity of the cut } \delta(\{s\})$ Since $\varphi^* \leq k(\{s\}) \leq m k_{max}$ where m = |A| and $k_{max} = \max\{k_{ij} : (i, j) \in A\}$ and each cycle is O(m), the overall complexity is $O(m^2k_{max})$.

Definition: The <u>size of an instance</u> I, denoted by |I|, is the number of bits needed to describe the instance.

Since $\lceil \log_2(i) \rceil + 1$ bits needed to store integer *i*, $|I| = O(m \log_2(k_{max}))$

 $O(m^2 k_{max})$ grows exponentially with |I| because $k_{max} = 2^{\log_2(k_{max})}$.

In some cases the algorithm is very *inefficient*:

Observation: The algorithm can be made <u>polynomial</u> by looking for <u>augmenting paths</u> with a <u>minimum number of arcs</u>.

Edmonds and Karp O(nm^2), Dinic O(n^2m),...

Also valid for the case where capacities are not integer.

Polynomial time algorithms for flow problems

More efficient algorithms exist, based on augmenting paths, pre-flows (relaxing the node flow balance constraints) and capacity scaling.

Problem <u>Mir</u>

Minimum cost flow problem

Given a network with a unit cost c_{ij} associated to each arc (i,j) and a value $\varphi > 0$, determine a <u>feasible flow</u> from *s* to *t* of value φ and of <u>minimum</u> total <u>cost</u>.

<u>Idea</u>: Start from a feasible flow <u>x</u> of value φ and send, at each iteration, an additional amount of product in the residual network (respecting the residual capacities and the value φ) along <u>cycles of negative cost</u>.

2.4.4 Indirect applications

1) Assignment (matching) problem

Given m engineers, n tasks and for each engineer the list of tasks he/she can perform. Assign the tasks to the engineers so that:

- each engineer is assigned at most one task,
- each task is assigned to at most one engineer,

and the number of tasks that are executed (engineers involved) is maximized.

If the competences of the engineers are represented via a bipartite graph, what are we looking for in such a graph?

How can we reduce this problem to the problem of finding a feasible <u>flow</u> of <u>maximum value</u> in an ad hoc network?

Graphical model:

Bipartite graph of competences

engineers

tasks

Definition: Given an undirected bipartite graph G = (V, E), a <u>matching</u> $M \subseteq E$ is a subset of non adjacent edges.

Given a bipartite graph G=(V, E), determine a matching with a maximum number of edges.

This problem can be reduced to the problem of finding a feasible flow of maximum value from *s* to *t* in the following network:

Correspondence between the <u>feasible flows</u> (from *s* to *t*) of <u>value φ </u> and the <u>matchings</u> containing φ edges.

Indeed: integer capacities \Rightarrow optimal flow has integer x_{ij} and integer maximum value φ^* .

2) Distributed computing

Assign n modules of a program to 2 processors so as to minimize the total cost (execution cost + communication cost).

Suppose we know:

 α_i = execution cost of module *i* on 1st processor $1 \le i \le n$ β_i = execution cost of module *i* on 2nd processor $1 \le i \le n$ c_{ij} = communication cost if modules *i* and *j* are assigned to different processors $1 \le i, j \le n$.

Reduce this problem to that of finding a <u>cut of minimum total</u> <u>capacity</u> in an ad hoc directed network.

Correspondence between the *s*-*t* cuts of minimum capacity and the minimum total cost assignments of the modules to the processors.