2.4 Network flows

Problems involving the distribution of a given "product" (e.g., water, gas, data,...) from a set of "sources" to a set of "users" so as to optimize a given objective function (e.g., amount of product, total cost,...).

Many direct and indirect applications

- telecommunication
- transportation (public, freight, railway, air,...)
- logistics
-...

2.4.1 Maximum flow problem

Definitions:

- A network is a directed and connected graph $G=(V, A)$ with a source $s \in V$ and a sink $t \in V$ with $s \neq t$, and a capacity $k_{i j} \geq 0$ for each $\operatorname{arc}(i, j) \in A$.

- A feasible flow \underline{x} from s to t is a vector $\underline{x} \in \mathbb{R}^{m}$ with a component $x_{i j}$ for each $\operatorname{arc}(i, j) \in A$ satisfying the capacity constraints

$$
0 \leq x_{i j} \leq k_{i j} \quad \forall(i, j) \in A
$$

Flow \underline{x} of value $\varphi=1$
and the flow balance constraints at each intermediate node $h \in V \quad(h \neq s, t)$

$$
\sum_{(i, h) \in \delta^{-}(h)} x_{i h}=\sum_{\left.(h, j) \in \delta^{+} h\right)} x_{h j} \quad \forall h \in V \backslash\{s, t\}
$$

(amount entering in $h=$ amount exiting from h)

- The $\underline{\text { value of flow }} \underline{x}: ~ \varphi=\sum_{(s, j) \in \delta^{+}(s)} x_{s j} \quad$ with $\delta^{+}(s)=\{(s, j):(s, j) \in A\}$
- Given a network and a feasible flow \underline{x},
$\operatorname{an} \operatorname{arc}(i, j) \in A$ is $\begin{cases}\underline{\text { saturated }} \\ \underline{\text { empty }} & \text { if }\left\{\begin{array}{l}x_{i j}=k_{i j} \\ x_{i j}=0\end{array} \text { }\right.\end{cases}$

Problem Given a network $G=(V, A)$ with an integer capacity $k_{i j}$ for each arc $(i, j) \in A$, and nodes $s, t \in V$, determine a feasible flow from s to t of maximum value.

Observation: If there are many sources/sinks with a unique type of product :
capacity $=$ availability limit, if any capacity $=+\infty$

$$
\begin{aligned}
& \delta-\left(s^{*}\right)=\varnothing \\
& \delta^{+}\left(t^{*}\right)=\varnothing
\end{aligned}
$$

Linear programming model

$\max \varphi$

$$
\begin{aligned}
& \text { s.t. } \\
& \sum_{(h, j) \in \delta^{+}(h)} x_{h j}-\sum_{(i, h) \in \delta^{-}(h)} x_{i h}= \begin{cases}\varphi & \text { if } h=s \longleftarrow \begin{array}{l}
\text { amount exiting } \\
\text { from } s
\end{array} \\
-\varphi & \text { if } h=t \\
0 & \text { otherwise }\end{cases} \\
& 0 \leq x_{i j} \leq k_{i j} \quad \forall(i, j) \in A \\
& x_{i j} \in \mathbb{R}, \varphi \in \mathbb{R}
\end{aligned}
$$

where φ denotes the value of the feasible flow \underline{x}

2.4.2 Cuts, feasible flows and weak duality

Definitions:

- A cut separating s from t is $\delta(S)$ of G with $s \in S \subset V$ and $t \in V \backslash S$.

$$
\text { Number of cuts separating } s \text { from } t ? \quad 2^{n-2} \text { with } n=|V|
$$

- Capacity of the $\underline{\text { cut }} \delta(S)$ induced by $S: \quad k(S)=\sum_{(i, j) \in \delta^{ \pm}(S)} k_{i j}$

- Given a feasible flow \underline{x} from s to t and a cut $\delta(S)$ with $s \in S$ and $t \notin S$, the value of the feasible flow \underline{x} through the cut $\delta(S)$ is

$$
\varphi(S)=\sum_{(i, j) \in \delta^{+}(S)} x_{i j}-\sum_{(i, j) \in \delta^{-}(S)} x_{i j}
$$

$$
\varphi(S)=2+0+2-1=3
$$

With this notation the value of the flow \underline{x} is $\varphi(\{s\})$.

Property Given a feasible flow \underline{x} from s to t, for each cut $\delta(S)$ separating s from t, we have

$$
\varphi(S)=\varphi(\{s\})
$$

Implied by the flow balance equations $\forall v \in V \backslash\{s, t\}$.

Property For each feasible flow \underline{x} from s to t and each cut $\delta(S)$,

 with $S \subseteq V$, separating s from t, we have
$\varphi(S) \leq k(S) \sim$ capacity of the cut
 value of the flow

Proof Since

$$
\varphi(S)=\sum_{(i, j) \in \delta^{+}(S)}^{x_{i j}^{\mid V}} \stackrel{k}{i j}_{x_{i}}^{\sum_{(i, j) \in \delta^{-}}{ }_{i j}^{\wedge} x_{i j}} \leq \sum_{(i, j) \in \delta^{+}(S)} k_{i j}=k(S)
$$

Consequence: If $\varphi(S)=k(S)$ for a subset $S \subseteq V$ with $s \in S$ and $t \notin S$, then \underline{x} is a flow of maximum value and the cut $\delta(S)$ is of minimum capacity.

The property $\quad \varphi(S) \leq k(S) \quad \forall$ feasible flow \underline{x} and \forall cut $\delta(S)$ separating s from t, expresses a weak duality relationship between the two problems:

Primal problem: Given $G=(V, A)$ with integer capacities on the arcs and $s, t \in V$, determine a feasible flow of maximum value.

Dual problem: Given $G=(V, A)$ with integer capacities on the arcs and $s, t \in V$, determine a cut (separating s from t) of minimum capacity.

We shall see that such a relationship holds for any LP!

2.4.3 Ford-Fulkerson's algorithm

Idea: Start from a feasible flow \underline{x} and try to iteratively increase its value φ by sending, at each iteration, an additional amount of product along a(n undirected) path from s to t with a strictly positive residual capacity.

$\Delta \varphi=\delta=1$

$$
\varphi(\{s\})=2
$$

Can the value of the current feasible flow \underline{x} be increased?

$$
\varphi(\{s\})=2
$$

If $(i, j) \underline{\text { is not saturated }}\left(x_{i j}<k_{i j}\right)$, we can increase $x_{i j}$
If (i, j) is not empty $\left(x_{i j}>0\right)$, we can decrease $x_{i j}$ while respecting

$$
0 \leq x_{i j} \leq k_{i j}
$$

$$
\varphi(\{s\})=2
$$

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

$$
\varphi(\{s\})=2
$$

We can send $\delta=1$ additonal units of product from s to t :
$+\delta$ along forward arcs
$-\delta$ along backward arcs

Rationale: The unit of product that was going from \bullet to \circ is redirected to t and the missing unit in O is supplied from s.

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Definition: A path P from s to t is angmenting path with respect to the current feasible flow \underline{x} if
$x_{i j}<k_{i j}$ for all forward arc and $x_{i j}>0$ for all backward arc.

Since the maximum additional amount of product that can be sent along the augmenting path $s-\circ-\bullet-t$

is equal to $\delta=1$, we obtain the new feasible flow \underline{x}

Given a feasible flow \underline{x} for $G=(V, A)$, we construct the residual network $\overline{\bar{G}}=(V, \bar{A})$ associated to \underline{x}, which accounts for all possible flow variations with respect to \underline{x}.

New feasible flow \underline{x} of value $\varphi=3+\delta \quad(\delta=1)$

At each iteration: To look for an augmenting path from s to t in G, we search for a path from s to t in \bar{G}.

If \exists an augmenting path from s to t, the current flow \underline{x} is not optimal (of maximum value).

Example

Augmenting path along which we can send $\delta=2$ additional units of product

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

feasible flow \underline{x}_{1} of value $\varphi_{1}=2$
augmenting path with $\delta=2$ with respect to the current feasible flow \underline{x}_{1}

(7) is not reachable from (1) (only (4) is reachable) \Rightarrow STOP

E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Proposition: Ford-Fulkerson's algorithm is exact.

A feasible flow \underline{x} is of maximum value $\Leftrightarrow t$ is not reachable from s in the residual network \bar{G} associated to \underline{x}.
(\Rightarrow) If \exists an aumenting path, \underline{x} is not optimal (of maximum value).
(\Leftarrow) If t is not reachable from s, \exists cut of \bar{G} such that $\delta_{\bar{G}}^{ \pm}\left(S^{*}\right)=\varnothing$
By definition of \bar{G}, we have

$$
s \in S^{*} \subseteq V
$$

- every $(i, j) \in \delta_{G}^{+}\left(S^{*}\right)$ is saturated
- every $(i, j) \in \delta_{G}^{-}\left(S^{*}\right)$ is empty.

Therefore
 all saturated all empty

Weak duality: $\quad \varphi(S) \leq k(S)$
$\forall \underline{x}$ feasible
$\forall S \subseteq V, s \in S, t \notin S$
\Rightarrow the feasible flow \underline{x} is of maximum value and the cut induced by S^{*}, namely $\delta_{\mathrm{G}}\left(S^{*}\right)$, is of minimum capacity.

The algorithm implies:
Theorem (Ford-Fulkerson)
The value of a feasible fow of maximum value $=$ the capacity of a cut of minimum capacity.

strong duality

Observations:

- If all the capacities $k_{i j}$ are integer $\left(\in \mathbb{Z}^{+}\right)$, the flow \underline{x} of maximum value has all $x_{i j}$ integer and an integer value φ^{*}.
- Ford-Fulkerson's algorithm is not greedy ($x_{i j}$ are also decreased).

Ford-Fulkerson's algorithm

\square Input $\quad G=(V, A)$, capacity $k_{i j}>0 \quad \forall(i, j) \in A$, source $s \in V$, $\operatorname{sink} t \in V$
Output Feasible flow \underline{x} from s to t of maximum value φ^{*}

```
BEGIN
    x:=\underline{0; \varphi:=0; optimum:=false; /* initialization */}
    REPEAT
        Build residual network G associated to x_
        Determine, if \exists, a path P from s to t in \overline{G};
        IF P does not exist THEN optimum := true;
        ELSE
        \delta:= min { \mp@subsup{k}{ij}{}:(i,j) \in P}; \varphi:= \varphi + \delta;
        FOR EACH (i,j) \in P DO
            IF (i,j) is forward THEN }\mp@subsup{x}{ij}{}:=\mp@subsup{x}{ij}{}+\delta
            ELSE }\mp@subsup{\textrm{x}}{\textrm{ji}}{}:=\mp@subsup{x}{ji}{}-\delta; END-I
        END-IF
    UNTIL optimum = true; Maximum number of cycles?
END
            E. Amaldi - Foundations of Operations Research - Politecnico di Milano

\section*{Complexity}

Since \(\delta>0\), the value \(\varphi\) increases at each iteration (cycle).
If all \(k_{i j}\) are integer, \(\underline{x}\) and \(\bar{k}_{i j}\) integer and \(\delta \geq 1 \Rightarrow\) at \(\operatorname{most} \varphi^{*}\) increases.
\(\quad \begin{aligned} & \text { capacity of the cut } \delta(\{s\}) \\ & \text { Since } \varphi^{*} \leq k(\{s\}) \leq m k_{\max }\end{aligned}\)
where \(m=|A|\) and \(k_{\text {max }}=\max \left\{k_{i j}:(i, j) \in A\right\}\)
and each cycle is \(O(m)\), the overall complexity is \(O\left(m^{2} k_{\max }\right)\).
Definition: The size of an instance \(I\), denoted by \(|I|\), is the number of bits needed to describe the instance.

Since \(\left\lceil\log _{2}(i)\right\rceil+1\) bits needed to store integer \(i,|I|=O\left(m \log _{2}\left(k_{\text {max }}\right)\right)\)
\[
O\left(m^{2} k_{\max }\right) \text { grows exponentially with }|I| \text { because } k_{\max }=2^{\log _{2}\left(k_{\max }\right)} \text {. }
\]

In some cases the algorithm is very inefficient:


M very large
\[
\delta=1
\]

In the worst case: 2 M iterations!

Observation: The algorithm can be made polynomial by looking for augmenting paths with a minimum number of arcs.

Edmonds and Karp \(\mathrm{O}\left(n m^{2}\right)\), Dinic \(\mathrm{O}\left(n^{2} m\right), \ldots\)
Also valid for the case where capacities are not integer.

\section*{Polynomial time algorithms for flow problems}

More efficient algorithms exist, based on augmenting paths, pre-flows (relaxing the node flow balance constraints) and capacity scaling.

\section*{Problem \\ Minimum cost flow problem}

Given a network with a unit \(\operatorname{cost} c_{i j}\) associated to each arc \((i, j)\) and a value \(\varphi>0\), determine a feasible flow from \(s\) to \(t\) of value \(\varphi\) and of minimum total cost.

Idea: Start from a feasible flow \(\underline{x}\) of value \(\varphi\) and send, at each iteration, an additional amount of product in the residual network (respecting the residual capacities and the value \(\varphi\) ) along cycles of negative cost.

\subsection*{2.4.4 Indirect applications}

\section*{1) Assigment (matching) problem}

Given \(m\) engineers, \(n\) tasks and for each engineer the list of tasks he/she can perform. Assign the tasks to the engineers so that:
- each engineer is assigned at most one task,
- each task is assigned to at most one engineer, and the number of tasks that are executed (engineers involved) is maximized.

If the competences of the engineers are represented via a bipartite graph, what are we looking for in such a graph?

How can we reduce this problem to the problem of finding a feasible flow of maximum value in an ad hoc network?

Graphical model:

Bipartite graph
of competences


Definition: Given an undirected bipartite graph \(G=(V, E)\), a matching \(M \subseteq E\) is a subset of non adjacent edges.

Problem
Given a bipartite graph \(G=(V, E)\), determine a matching with a maximum number of edges.

This problem can be reduced to the problem of finding a feasible flow of maximum value from \(s\) to \(t\) in the following network:


Correspondence between the feasible flows (from \(s\) to \(t\) ) of value \(\varphi\) and the matchings containing \(\varphi\) edges.

Indeed: integer capacities \(\Rightarrow\) optimal flow has integer \(x_{i j}\) and integer maximum value \(\varphi^{*}\).

\section*{2) Distributed computing}

Assign \(n\) modules of a program to 2 processors so as to minimize the total cost (execution cost + communication cost).

Suppose we know:
\(\alpha_{i}=\) execution cost of module \(i\) on \(1^{\text {st }}\) processor \(1 \leq i \leq \mathrm{n}\)
\(\beta_{i}=\) execution cost of module \(i\) on \(2^{\text {nd }}\) processor \(1 \leq i \leq \mathrm{n}\)
\(\mathrm{c}_{i j}=\) communication cost if modules \(i\) and \(j\) are assigned to different processors \(1 \leq i, j \leq \mathrm{n}\).

Reduce this problem to that of finding a cut of minimum total capacity in an ad hoc directed network.

cut separating \(s\) from \(t \longleftrightarrow\) assignment of the n modules to the 2 processors

Correspondence between the \(s-t\) cuts of minimum capacity and the minimum total cost assignments of the modules to the processors.```

