
E. Amaldi – Foundations of Operations Research – Politecnico di Milano 1

Chapter 3: Fundamentals of computational complexity

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 2

Goal: Evaluate the computational requirements (we focus on time)
to solve computational problems.

• Evaluate the complexity of a given algorithm A to solve a
given problem P.

• Evaluate the inherent difficulty of a given problem P.

Two major types of issues:

Focus here on discrete optimization problems.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 3

3.1 Algorithm complexity (recap)

Definition: An instance I of a problem P is a special case of P.

Example Problem P : order m integer numbers c1, ..., cm

Instance I : m = 3, c1 = 2, c2 = 7, c3 = 5

Goal: Estimate the performance of alternative algorithms for a given
problem so as to select the most appropriate one for the instances of
interest.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 4

Clearly, the number of elementary operations depends on the size
of the instance.

The computing time of an algorithm is evaluated in terms of

the number of elementary operations (arithmetic operations,
comparisons, memory accesses,...) needed to solve a given
instance I.

Assumption: all elementary operations require one unit of time.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 5

Definition: The size of an instance I, denoted by |I|, is the number
of bits needed to encode (describe) I.

Example An instance is specified by values: m and c1,..., cm

For the previous instance m = 3, c1 = 2, c2 = 7, c3 = 5

 |I|  log2 3 + 3 · log2 7

Size of an instance

|I|  log2 m + m · log2 cmax where cmax= max{cj : 1  j  m}

Since log2(i) bits are needed to encode a positive integer i

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 6

We look for a function f (n) such that, for every instance I of size at
most n ( I with |I|  n)

the number of elementary operations to solve instance I  f (n).

Time complexity

Example An O(m log m) algorithm is available to sort m integer
numbers (e.g., quicksort).

Observations:
• Since f (n) is an upper bound  I with |I|  n, we consider the

worst case behaviour.
• f (n) is expressed in asymptotic terms – O(…) notation.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 7

Definition: An algorithm is polynomial if it requires, in the worst
case, a number of elementary operations

f(n) = O(nd), where d is a constant and n = |I| is the size of the
instance.

O(nd)
polynomial

O(2n)
exponential

We distinguish between algorithms whose order of complexity
(in the worst case) is

Polynomial algorithms with, for instance, d6 are not

efficient in practice!

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 8

• Dijkstra’s algorithm for shortest path problem

Size of the instance: |I| = O(m log2 n + m log2 cmax)

Time complexity: O(n2) where n is the number of nodes

• Basic version of Ford-Fulkerson’s algorithm for maximum flow
problem

Examples

Size of the instance: |I| = O(m log2 n + m log2 kmax)

Time complexity: O(m2 kmax) where m is the number of arcs

 polynomial w.r.t |I| (|I| ≥ m ≥ n -1).

 not polynomial with respect to |I|.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 9

3.2 Inherent problem complexity

Goal: Evaluate the inherent difficulty of a given computational
problem so as to adopt an appropriate solution approach.

Intuitively, we look for the complexity of “the most efficient
algorithm that could ever be designed” for that problem.

Definition: A problem P is polynomially solvable (“easy”) if there
is a polynomial-time algorithm providing an (optimal) solution for
every instance.

Examples: min spanning trees, shortest paths, max flows,...

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 10

? Do “difficult” problems (which cannot be solved in
polynomial time) actually exist?

For many (discrete) optimization problems, the best algorithm
known today requires a number of elementary operations
which grows, in the worst case, exponentially in the size of the
instance.

Observation: This does not prove that they are “difficult”!

Given an integer number, determine whether it is prime.

Thought to be difficult for a long time, until Agrawal-
Kayal-Saxena found a polynomial-time algorithm in 2002.

Example

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 11

Traveling salesman problem (TSP)

arc cost (e.g., distance, travel time)

Problem Given a directed G = (N, A) with a cost cij  for each
(i, j)  A, determine a circuit of minimum total cost
visiting each node exactly once.

Z

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 12

Definition: A Hamiltonian circuit C is a circuit that visits each
node exactly once.

Denoting by H the set of all Hamiltonian circuits of G, the problem
amounts to

(,)

min ijC H i j C

c





Applications: logistics, scheduling, VLSI design,…

| H |  (n – 1)!

Observation: H contains a finite number of elements:

Many variants and extensions (Vehicle Routing Problem --VRP)

13http://www.math.uwaterloo.ca/tsp/

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 14

To each optimization problem we can associate a recognition version.

Example TSP-r

Given a directed G = (N, A) with integer costs cij and an integer L,
does there exist a Hamiltonian circuit of total cost  L ?

We consider recognition problems rather than optimization problems.

3.3 Basics of NP-completeness theory

Definition: A recognition problem is a problem whose solution is
either “yes” or “no”.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 15

Any optimization problem is at least as difficult as (not easier than)
the recognition version.

If the recognition version is “difficult”,

then the optimization problem is also “difficult”.

Recognition problems

If we knew how to solve TSP (determine a Hamiltonian circuit
of minimum total cost), we could obviously solve TSP-r
(decide whether  a Hamiltonian circuit of total cost  L).

Example

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Definition: P denotes the class of all recognition problems that
can be solved in polynomial time.

Example: recognition versions of optimal spanning trees, shortest paths,
maximum flows.

Complexity class P

For each recognition problem in P, there exists an algorithm providing,
for every instance I, the answer “yes” or “no” in polynomial time in |I|.

Observation: P can be formally defined in terms of
polynomial time (deterministic) Turing machines.

A. Turing 1912-54

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 17

Complexity class NP

Definition: NP denotes the class of all recognition problems such
that, for each instance with “yes” answer, there exists a concise
certificate (proof) which allows to verify in polynomial time that
the answer is “yes”.

TSP-r  NP

Indeed, one can verify in polynomial time if a given
sequence of nodes corresponds to a Hamiltonian circuit and
if its total cost  L.

Example

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 18

Observation: We do not consider how difficult it is to find the
certificate (it could be provided by an “oracle”)! It suffices that it
exists and it allows to verify the “yes” answer in polynomial time.

NP denotes the class of all recognition problems for which  a
polynomial p(n) and a certificate-checking algorithm Acc such
that :

I is a “yes”-instance   a certificate (I) of polynomial size
(| (I)|  p(|I|)) and Acc applied to the input “I,(I)” reaches
the answer “yes” in at most p(|I|) steps.

Formal definition:

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 19

Clearly P  NP

Conjecture P  NP

P

NP

P

!
NP does not stand for “Not Polynomial” algorithm but for
“Non-deterministic Polynomial” Turing machines.

One of the “Millennium Prize
Problems” 2000!

Relationship between P and NP

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 20

Concept needed to classify recognition problems according to their
intrinsic complexity and to identify the most difficult ones in NP.

Polynomial time reductions

Definition:
Let P1 and P2  NP, then P1 reduces in polynomial time to P2

(P1  P2) if there exists an algorithm to solve P1 which

• uses (once or several times) a hypothetical algorithm for P2 as a
subroutine,

• the algorithm for P1 runs in polynomial time if we assume that
the algorithm for P2 runs in constant time (i.e. is O(1)).

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 21

Example

TSP-r: Given a directed graph G’ = (N’, A’) with arc costs and an
integer L’, ∃ a Hamiltonian circuit of total cost  L’ ?

Undir-TSP-r: Given undirected graph G = (N, E) with arc costs and an
integer L, ∃ a Hamiltonian cycle of total cost  L ?

Undir-TSP-r  t TSP-r

Definition:
A reduction is a polynomial time transformation (P1 t P2) if the
algorithm that solves P2 is called only once.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 22

in polynomial time

 I1  P1 it is easy to construct a particular I2  P2

such that I1 has a “yes” answer  I2 has a “yes” answer.

Show that Undir-TSP-r  t TSP-r :

11

5

2

3

4

2
26

5

3
4

4
2G=(N,E)

L = 15

1

5

2

3

4

1

2
26

5

3
4

4
2G’=(N’,A’)

L’ = 15

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 23

Consequence:

If P1  P2 and P2 admits a polynomial-time algorithm, then also
P1 can be solved in polynomial time.

P2  P  P1  P

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 24

Definition: A problem P is NP-complete if and only if

1) P belongs to NP

2) every other problem P’  NP can be reduced to P in
polynomial time (P’  P).

NP
P

NP-complete

NP-complete problems

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 25

Consequence: If there exists a polynomial-time algorithm for any
NP-complete problem ( P), then all problems in NP can be
solved in polynomial time (we would have P = NP).

This is considered to be extremely unlikely

Therefore NP-completeness provides strong evidence that a
problem is inherently difficult.

cf. Long list of important recognition problems that are NP-complete
and for which no polynomial time algorithms are known.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 26

Do NP-complete problems exist?

Truth assignment: y1 = true, y2 = false, y3 = false

Satisfiabilty problem (SAT)

Given m Boolean clauses C1,…, Cm (disjunctions – OR – of
Boolean variables yj and their complements yj), does there
exist a truth assignment (of values “true” or ”false” to the
variables) satisfying all the clauses?

¯

Example
C1 : (y1  y2  y3)
C2 : (y1  y2)
C3 : (y2  y3)

¯
¯
¯

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 27

First problem proved to be NP-complete:

Theorem (Cook 1971)

SAT is NP-complete.

Stephen A.Cook 1939-

Using the characterization of NP in terms of polynomial time non-
deterministic Turing machine and the concept of polynomial time
reduction.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 28

Show that the recognition versions of 21 discrete optimization problems
are NP-complete.

(1974)

Richard M. Karp 1935-

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 29

To show that P2  NP is NP-complete it “suffices” to show that an
NP-complete problem P1 reduces in polynomial time to P2 :

P  P1,  P  NP , and P1  P2 implies by transitivity that

P  P2 , P  NP.

P1: Given undirected G with arc costs and an integer L, ∃ a
Hamiltonian cycle of total cost  L?

P2: Given directed G’ with arc costs and an integer L’, ∃ a
Hamiltonian circuit of total cost  L’ ?

Example

How to show that a problem is NP-complete

P2  NP and P1  P2 with P1 NP-complete

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 30

• Given undirected G = (N, E), does there exist a Hamiltonian
cycle? (Karp 74)

• Given a linear system Ax  b with integer coefficients and binary
variables,  a solution x 0,1n? (pages 32-33)

Other examples of NP-complete problems

• Given directed G = (N, A), two nodes s and t, and an integer L, 
a simple path (with distinct intermediate nodes) from s to t
containing a number of arcs  L? (exercise 3.4)

• Given directed G = (N, A) with arc costs, two nodes s and t, and
an integer L,  a simple path from s to t of total cost  L?

(exercise 3.4)

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 31

Definition: A problem is NP-hard if every problem in NP can be
reduced to it in polynomial time (even if it does not belong to NP).

Example TSP is NP-hard.

Indeed, TSP-r (does there exist a Hamiltonian circuit of
total cost  L?) is NP-complete.

NP-hard problems

Observation: All optimization problems with an NP-complete
recognition version are NP-hard.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 32

1) ILP-r belongs to NP since: i) it is a recognition problem,
ii) given a solution vector x {0, 1}n we can verify in polynomial
time that it satisfies all inequalities of Ax  b.

Integer Linear Programming (ILP):

Given A mn, b m1 and c n1 with integer coefficients, find x
{0, 1}n that satisfies Ax  b and minimizes cTx.

Proposition (Karp 74): ILP is NP-hard. (also exercise 3.3)

Proof We show that ILP recognition version is NP-complete.

ILP-r: Given Ax  b with integer coefficients,  a solution
x {0, 1}n?

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 33

For any instance I1 of SAT we can construct in polynomial (linear) time
a special instance I2 of ILP-r as follows:

I1 of SAT:

(y1  y2  y3)
(y1  y2)
(y2  y3)
yi {true, false} i {1,2,3}

¯
¯
¯

I2 of ILP-r:

x1 + x2 + x3 1
(1- x1)+(1- x2)  1
x2 +(1- x3)  1
xi {0, 1}  i {1,2,3}

2) Show that the NP-complete problem SAT can be transformed in
polynomial time to ILP-r.

and, clearly, the answer to I1 is “yes” if and only if the answer of I2
is “yes”.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano 34

Other examples of NP-hard problems

• Given directed G = (N, A) with arc costs, two nodes s and t, find
a simple path from s to t of maximum total cost.

(exercise 3.4)

• Given directed G = (N, A) with arc costs, two nodes s and t,
find a simple path from s to t of minimum total cost.

(exercise 3.4)

• ….

