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Chapter 3: Fundamentals of computational complexity



E. Amaldi – Foundations of Operations Research – Politecnico di Milano 2

Goal: Evaluate the computational requirements (we focus on time)   
to solve computational problems.

• Evaluate the complexity of a given algorithm A to solve a 
given problem P.

• Evaluate the inherent difficulty of a given problem P.

Two major types of issues:

Focus here on discrete optimization problems.
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3.1  Algorithm complexity (recap)

Definition: An instance I of a problem P is a special case of P. 

Example Problem P : order m integer numbers c1, ..., cm

Instance  I :  m = 3, c1 = 2, c2 = 7, c3 = 5

Goal: Estimate the performance of alternative algorithms for a given
problem so as to select the most appropriate one for the instances of 
interest.
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Clearly, the number of elementary operations depends on the size 
of the instance.

The computing time of an algorithm is evaluated in terms of 

the number of elementary operations (arithmetic operations, 
comparisons, memory accesses,...) needed to solve a given
instance I.

Assumption: all elementary operations require one unit of time.
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Definition:  The size of an instance I, denoted by |I|, is the number 
of bits needed to encode (describe) I.

Example An instance is specified by values: m and c1,..., cm

For the previous instance m = 3,  c1 = 2,  c2 = 7,  c3 = 5

 |I|  log2 3 + 3 · log2 7

Size of an instance

|I|  log2 m + m · log2 cmax where cmax= max{cj : 1  j  m}

Since log2(i) bits are needed to encode a positive integer i
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We look for a function f (n) such that, for every instance I of size at 
most n (  I with |I|  n ) 

the number of elementary operations to solve instance I  f (n).

Time complexity

Example An O(m log m) algorithm is available to sort m integer 
numbers (e.g., quicksort).  

Observations: 
• Since f (n) is an upper bound  I with |I|  n, we consider the

worst case behaviour. 
• f (n) is expressed in asymptotic terms – O(…) notation.
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Definition:  An algorithm is polynomial if it requires, in the worst 
case, a number of elementary operations

f(n) = O(nd),    where d is a constant and n = |I| is the size of the  
instance.

O(nd)
polynomial

O(2n)
exponential

We distinguish between algorithms whose order of complexity 
(in the worst case) is

Polynomial algorithms with, for instance, d6 are not 

efficient in practice!
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• Dijkstra’s algorithm for shortest path problem

Size of the instance:   |I| = O(m log2 n + m log2 cmax)

Time complexity: O(n2)    where n is the number of nodes

• Basic version of Ford-Fulkerson’s algorithm for maximum flow 
problem

Examples

Size of the instance:   |I| = O(m log2 n + m log2 kmax)

Time complexity: O(m2 kmax)    where m is the number of arcs

 polynomial w.r.t |I|            (|I| ≥ m ≥ n -1).

 not polynomial with respect to |I|. 
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3.2 Inherent problem complexity

Goal: Evaluate the inherent difficulty of a given computational
problem so as to adopt an appropriate solution approach.

Intuitively, we look for the complexity of “the most efficient
algorithm that could ever be designed” for that problem.

Definition: A problem P is polynomially solvable (“easy”) if there
is a polynomial-time algorithm providing an (optimal) solution for 
every instance.

Examples: min spanning trees, shortest paths, max flows,...
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? Do “difficult” problems (which cannot be solved in 
polynomial time) actually exist? 

For many (discrete) optimization problems, the best algorithm
known today requires a number of elementary operations
which grows, in the worst case, exponentially in the size of the
instance.

Observation: This does not prove that they are “difficult”!

Given an integer number, determine whether it is prime.

Thought to be difficult for a long time, until Agrawal-
Kayal-Saxena found a polynomial-time algorithm in 2002.

Example
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Traveling salesman problem (TSP)

arc cost (e.g., distance, travel time)

Problem Given a directed G = (N, A) with a cost cij  for each
(i, j)  A, determine a circuit of minimum total cost
visiting each node exactly once.

Z
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Definition: A Hamiltonian circuit C is a circuit that visits each 
node exactly once.

Denoting by H the set of all Hamiltonian circuits of G, the problem 
amounts to

( , )

min ijC H i j C

c





Applications: logistics, scheduling, VLSI design,… 

| H |  ( n – 1 )!

Observation: H contains a finite number of elements:

Many variants and extensions (Vehicle Routing Problem --VRP)



13http://www.math.uwaterloo.ca/tsp/
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To each optimization problem we can associate a recognition version.

Example TSP-r

Given a directed G = (N, A) with integer costs cij and an integer L, 
does there exist a Hamiltonian circuit of total cost  L ? 

We consider recognition problems rather than optimization problems. 

3.3 Basics of NP-completeness theory

Definition: A recognition problem is a problem whose solution is 
either “yes” or “no”. 
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Any optimization problem is at least as difficult as (not easier than) 
the recognition version.

If the recognition version is “difficult”, 

then the optimization problem is also “difficult”.

Recognition problems

If we knew how to solve TSP (determine a Hamiltonian circuit
of minimum total cost), we could obviously solve TSP-r 
(decide whether  a Hamiltonian circuit of total cost  L).

Example
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Definition: P denotes the class of all recognition problems that 
can be solved in polynomial time.

Example: recognition versions of optimal spanning trees, shortest paths, 
maximum flows.

Complexity class P

For each recognition problem in P, there exists an algorithm providing, 
for every instance I, the answer “yes” or “no” in polynomial time in |I|.

Observation: P can be formally defined in terms of 
polynomial time (deterministic) Turing machines.

A. Turing 1912-54
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Complexity class NP

Definition: NP denotes the class of all recognition problems such
that, for each instance with “yes” answer, there exists a concise
certificate (proof) which allows to verify in polynomial time that
the answer is “yes”.

TSP-r  NP

Indeed, one can verify in polynomial time if a given 
sequence of nodes corresponds to a Hamiltonian circuit and 
if its total cost  L.

Example
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Observation: We do not consider how difficult it is to find the
certificate (it could be provided by an “oracle”)! It suffices that it
exists and it allows to verify the “yes” answer in polynomial time.

NP denotes the class of all recognition problems for which  a
polynomial p(n) and a certificate-checking algorithm Acc such
that :

I is a “yes”-instance   a certificate (I) of polynomial size
( | (I)|  p(|I|) ) and Acc applied to the input “I,(I)” reaches
the answer “yes” in at most p(|I|) steps.

Formal definition:
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Clearly P  NP

Conjecture P  NP

P

NP

P

!
NP does not stand for “Not Polynomial” algorithm but for  
“Non-deterministic Polynomial” Turing machines.

One of the “Millennium Prize 
Problems” 2000!

Relationship between P and NP
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Concept needed to classify recognition problems according to their 
intrinsic complexity and to identify the most difficult ones in NP.

Polynomial time reductions

Definition:
Let P1 and P2  NP, then P1 reduces in polynomial time to P2  

(P1  P2)  if there exists an algorithm to solve P1  which

• uses (once or several times) a hypothetical algorithm for P2 as a 
subroutine,

• the algorithm for P1 runs in polynomial time if we assume that
the algorithm for P2 runs in constant time (i.e. is O(1)).
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Example

TSP-r: Given a directed graph G’ = ( N’, A’) with arc costs and an
integer L’, ∃ a Hamiltonian circuit of total cost  L’ ?

Undir-TSP-r:  Given undirected graph G = ( N, E ) with arc costs and an 
integer L, ∃ a Hamiltonian cycle of total cost  L ?

Undir-TSP-r   t TSP-r

Definition: 
A reduction is a polynomial time transformation (P1 t  P2)  if the 
algorithm that solves P2 is called only once.
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in polynomial time

 I1  P1 it is easy to construct a particular  I2  P2

such that I1 has a “yes” answer  I2 has a “yes” answer.

Show that  Undir-TSP-r   t TSP-r :
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Consequence: 

If  P1  P2 and P2 admits a polynomial-time algorithm, then also 
P1 can be solved in polynomial time.

P2  P  P1  P



E. Amaldi – Foundations of Operations Research – Politecnico di Milano 24

Definition:  A problem P is NP-complete if and only if

1)  P belongs to NP

2)  every other problem P’  NP can be reduced to P in 
polynomial time ( P’  P ).

NP
P

NP-complete

NP-complete problems
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Consequence: If there exists a polynomial-time algorithm for any
NP-complete problem ( P ), then all problems in NP can be
solved in polynomial time (we would have P = NP ).

This is considered to be extremely unlikely

Therefore NP-completeness provides strong evidence that a
problem is inherently difficult.

cf. Long list of important recognition problems that are NP-complete
and for which no polynomial time algorithms are known.
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Do NP-complete problems exist?

Truth assignment:    y1 = true, y2 = false, y3 = false

Satisfiabilty problem (SAT) 

Given m Boolean clauses C1,…, Cm ( disjunctions – OR – of
Boolean variables yj and their complements yj ), does there
exist a truth assignment (of values “true” or ”false” to the
variables) satisfying all the clauses?

¯

Example
C1 : ( y1  y2  y3 )
C2 : ( y1  y2 ) 
C3 : ( y2  y3 )

¯
¯
¯
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First problem proved to be NP-complete:

Theorem (Cook 1971)     

SAT is NP-complete. 

Stephen A.Cook 1939-

Using the characterization of NP in terms of polynomial time non-
deterministic Turing machine and the concept of polynomial time
reduction.
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Show that the recognition versions of 21 discrete optimization problems 
are NP-complete.

(1974)

Richard M. Karp 1935-
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To show that P2  NP is NP-complete it “suffices” to show that an 
NP-complete problem P1 reduces in polynomial time to P2 :

P  P1,  P  NP ,  and  P1  P2  implies by transitivity that

P  P2 , P  NP.

P1:  Given undirected G with arc costs and an integer L, ∃ a 
Hamiltonian cycle of total cost  L?

P2:  Given directed G’ with arc costs and an integer L’, ∃ a 
Hamiltonian circuit of total cost  L’ ?

Example

How to show that a problem is NP-complete

P2  NP and  P1  P2   with P1 NP-complete
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• Given undirected G = (N, E), does there exist a Hamiltonian 
cycle?                  (Karp 74)

• Given a linear system Ax  b with integer coefficients and binary 
variables,  a solution x 0,1n?       (pages 32-33)

Other examples of NP-complete problems

• Given directed G = (N, A), two nodes s and t, and an integer L, 
a simple path (with distinct intermediate nodes) from s to t
containing a number of arcs  L?            (exercise 3.4)

• Given directed G = (N, A) with arc costs, two nodes s and t, and 
an integer L,  a simple path from s to t of total cost  L? 

(exercise 3.4)
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Definition: A problem is NP-hard if every problem in NP can be 
reduced to it in polynomial time (even if it does not belong to NP ).

Example TSP  is NP-hard.

Indeed, TSP-r (does there exist a Hamiltonian circuit of 
total cost  L?) is NP-complete.

NP-hard problems

Observation: All optimization problems with an NP-complete 
recognition version are NP-hard.
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1) ILP-r belongs to NP since: i) it is a recognition problem,  
ii) given a solution vector x {0, 1}n we can verify in polynomial 
time that it satisfies all inequalities of Ax  b.

Integer Linear Programming (ILP):       

Given A mn, b m1 and c n1 with integer coefficients, find x
{0, 1}n that satisfies Ax  b and minimizes cTx.

Proposition (Karp 74):  ILP is NP-hard. (also exercise 3.3) 

Proof We show that ILP recognition version is NP-complete. 

ILP-r: Given Ax  b with integer coefficients,  a solution
x {0, 1}n?
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For any instance I1 of SAT we can construct in polynomial (linear) time 
a special instance I2 of ILP-r as follows:

I1 of SAT:

( y1  y2  y3 )
( y1  y2 ) 
( y2  y3 )
yi {true, false}   i {1,2,3}

¯
¯
¯

I2 of ILP-r:

x1 + x2 + x3 1 
(1- x1 )+(1- x2 )  1 
x2 +(1- x3 )  1 
xi {0, 1}     i {1,2,3}

2) Show that the NP-complete problem SAT can be transformed in 
polynomial time to ILP-r.                

and, clearly, the answer to I1 is “yes” if and only if the answer of I2
is “yes”.
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Other examples of NP-hard problems

• Given directed G = (N, A) with arc costs, two nodes s and t, find 
a simple path from s to t of maximum total cost.                   

(exercise 3.4)

• Given directed G = (N, A) with arc costs, two nodes s and t, 
find a simple path from s to t of minimum total cost. 

(exercise 3.4)

• ….


