Chapter 3: Fundamentals of computational complexity

Goal: Evaluate the computational requirements (we focus on time) to solve computational problems.

Two major types of issues:

- Evaluate the complexity of a given algorithm A to solve a given problem P.
- Evaluate the inherent difficulty of a given problem P.

Focus here on discrete optimization problems.

3.1 Algorithm complexity (recap)

Goal: Estimate the performance of alternative algorithms for a given problem so as to select the most appropriate one for the instances of interest.

Definition: An instance I of a problem P is a special case of P.

Example Problem P : order m integer numbers c_{1}, \ldots, c_{m} Instance $I: m=3, c_{1}=2, c_{2}=7, c_{3}=5$

The computing time of an algorithm is evaluated in terms of the number of elementary operations (arithmetic operations, comparisons, memory accesses,...) needed to solve a given instance I.

Assumption: all elementary operations require one unit of time.

Clearly, the number of elementary operations depends on the size of the instance.

Size of an instance

Definition: The size of an instance I, denoted by $|I|$, is the number of bits needed to encode (describe) I.

Example An instance is specified by values: m and c_{1}, \ldots, c_{m}

Since $\left\lceil\log _{2}(i)\right\rceil$ bits are needed to encode a positive integer i

$$
|I| \leq\left\lceil\log _{2} m\right\rceil+m \cdot\left\lceil\log _{2} c_{\max }\right\rceil \quad \text { where } c_{\max }=\max \left\{c_{j}: 1 \leq j \leq m\right\}
$$

For the previous instance $m=3, c_{1}=2, c_{2}=7, c_{3}=5$

$$
\Rightarrow|I| \leq\left\lceil\log _{2} 3\right\rceil+3 \cdot\left\lceil\log _{2} 7\right\rceil
$$

Time complexity

We look for a function $f(n)$ such that, for every instance I of size at most $n(\forall I$ with $|I| \leq n$)
the number of elementary operations to solve instance $I \leq f(n)$.

Observations:

- Since $f(n)$ is an upper bound $\forall I$ with $|I| \leq n$, we consider the worst case behaviour.
- $f(n)$ is expressed in asymptotic terms $-\mathrm{O}(\ldots)$ notation.

Example An $O(m \log m)$ algorithm is available to sort m integer numbers (e.g., quicksort).

Definition: An algorithm is polynomial if it requires, in the worst case, a number of elementary operations

$$
f(n)=O\left(n^{d}\right), \quad \text { where } d \text { is a constant and } n=|I| \text { is the size of the }
$$ instance.

We distinguish between algorithms whose order of complexity (in the worst case) is

$O\left(2^{n}\right)$
exponential

Polynomial algorithms with, for instance, $d \geq 6$ are not efficient in practice!

Examples

- Dijkstra's algorithm for shortest path problem

Size of the instance: $\quad|I|=O\left(m \log _{2} n+m \log _{2} c_{\max }\right)$
Time complexity: $O\left(n^{2}\right)$ where n is the number of nodes
\Rightarrow polynomial w.r.t $|I| \quad(|I| \geq m \geq n-1)$.

- Basic version of Ford-Fulkerson's algorithm for maximum flow problem

Size of the instance: $|I|=O\left(m \log _{2} n+m \log _{2} k_{\max }\right)$
Time complexity: $O\left(m^{2} k_{\max }\right) \quad$ where m is the number of arcs
\Rightarrow not polynomial with respect to $|I|$.

3.2 Inherent problem complexity

Goal: Evaluate the inherent difficulty of a given computational problem so as to adopt an appropriate solution approach.

Intuitively, we look for the complexity of "the most efficient algorithm that could ever be designed" for that problem.

Definition: A problem P is polynomially solvable ("easy") if there is a polynomial-time algorithm providing an (optimal) solution for every instance.

Examples: min spanning trees, shortest paths, max flows,...

Do "difficult" problems (which cannot be solved in polynomial time) actually exist?

For many (discrete) optimization problems, the best algorithm known today requires a number of elementary operations which grows, in the worst case, exponentially in the size of the instance.

Observation: This does not prove that they are "difficult"!

Example Given an integer number, determine whether it is prime.
Thought to be difficult for a long time, until Agrawal-Kayal-Saxena found a polynomial-time algorithm in 2002.

Traveling salesman problem (TSP)

Problem

Given a directed $G=(N, A)$ with a cost $c_{i j} \in \mathbf{Z}$ for each $(i, j) \in A$, determine a circuit of minimum total cost visiting each node exactly once.

arc cost (e.g., distance, travel time)

Definition: A Hamiltonian circuit C is a circuit that visits each node exactly once.

Denoting by H the set of all Hamiltonian circuits of G, the problem amounts to

$$
\min _{C \in H} \sum_{(i, j) \in C} C_{i j}
$$

Observation: H contains a finite number of elements:

$$
|H| \leq(n-1)!
$$

Applications: logistics, scheduling, VLSI design,...

Many variants and extensions (Vehicle Routing Problem --VRP)

3.3 Basics of NP-completeness theory

We consider recognition problems rather than optimization problems.

Definition: A recognition problem is a problem whose solution is either "yes" or "no".

To each optimization problem we can associate a recognition version.

Example TSP-r
Given a directed $G=(N, A)$ with integer costs $c_{i j}$ and an integer L, does there exist a Hamiltonian circuit of total cost $\leq L$?

Recognition problems

Any optimization problem is at least as difficult as (not easier than) the recognition version.

Example If we knew how to solve TSP (determine a Hamiltonian circuit of minimum total cost), we could obviously solve TSP-r (decide whether \exists a Hamiltonian circuit of total cost $\leq L$).

If the recognition version is "difficult", then the optimization problem is also "difficult".

Complexity class P

Definition: \mathcal{P} denotes the class of all recognition problems that can be solved in polynomial time.

For each recognition problem in P, there exists an algorithm providing, for every instance I, the answer "yes" or "no" in polynomial time in $|I|$.

Example: recognition versions of optimal spanning trees, shortest paths, maximum flows.

Observation: \mathcal{P} can be formally defined in terms of polynomial time (deterministic) Turing machines.

Complexity class NP

Definition: NP denotes the class of all recognition problems such that, for each instance with "yes" answer, there exists a concise certificate (proof) which allows to verify in polynomial time that the answer is "yes".

Example TSP-r $\in N P$
Indeed, one can verify in polynomial time if a given
sequence of nodes corresponds to a Hamiltonian circuit and if its total cost $\leq L$.

Formal definition:

$N P$ denotes the class of all recognition problems for which $\exists \mathrm{a}$ polynomial $p(n)$ and a certificate-checking algorithm $\mathcal{A}_{\text {cc }}$ such that:
I is a "yes"-instance $\Leftrightarrow \exists$ a certificate $\gamma(I)$ of polynomial size ($|\chi(I)| \leq p(|I|))$ and $\mathcal{A}_{\text {cc }}$ applied to the input "I,,(I) " reaches the answer "yes" in at most $p(|I|)$ steps.

Observation: We do not consider how difficult it is to find the certificate (it could be provided by an "oracle")! It suffices that it exists and it allows to verify the "yes" answer in polynomial time.

Relationship between P and $N P$

Clearly $\quad \boldsymbol{P} \subseteq N P$

Conjecture
 $P \subset N P$

One of the "Millennium Prize Problems" 2000!

\triangle
NP does not stand for "Not Polynomial" algorithm but for "Non-deterministic Polynomial" Turing machines.

Polynomial time reductions

Concept needed to classify recognition problems according to their intrinsic complexity and to identify the most difficult ones in NP.

Definition:

Let P_{1} and $P_{2} \in N P$, then P_{1} reduces in polynomial time to P_{2}
($P_{1} \propto P_{2}$) if there exists an algorithm to solve P_{1} which

- uses (once or several times) a hypothetical algorithm for P_{2} as a subroutine,
- the algorithm for P_{1} runs in polynomial time if we assume that the algorithm for P_{2} runs in constant time (i.e. is $O(1)$).

Definition:

A reduction is a polynomial time transformation $\left(P_{1} \propto_{t} P_{2}\right)$ if the algorithm that solves P_{2} is called only once.

Example

Undir-TSP-r: Given undirected graph $G=(N, E)$ with arc costs and an integer L, \exists a Hamiltonian cycle of total cost $\leq L$?

TSP-r: Given a directed graph $G^{\prime}=\left(N^{\prime}, A^{\prime}\right)$ with arc costs and an integer L^{\prime}, \exists a Hamiltonian circuit of total cost $\leq L^{\prime}$?

Undir-TSP-r \propto_{t} TSP-r

Show that Undir-TSP-r \propto_{t} TSP-r :

in polynomial time

$\forall I_{1} \in P_{1}$ it is easy to construct a particular $I_{2} \in P_{2}$

$$
\begin{gathered}
G^{\prime}=\left(N^{\prime}, A^{\prime}\right) \\
L^{\prime}=15
\end{gathered}
$$

such that I_{1} has a "yes" answer $\Leftrightarrow I_{2}$ has a "yes" answer.

Consequence:

If $P_{1} \propto P_{2}$ and P_{2} admits a polynomial-time algorithm, then also P_{1} can be solved in polynomial time.

$$
P_{2} \in \mathbb{P} \Rightarrow P_{1} \in \mathbb{P}
$$

NP-complete problems

Definition: A problem P is NP-complete if and only if

1) P belongs to $N P$
2) every other problem $P^{\prime} \in N P$ can be reduced to P in polynomial time ($P^{\prime} \propto P$).

Consequence: If there exists a polynomial-time algorithm for any $N P$-complete problem $(\in \mathcal{P})$, then all problems in $N \mathcal{P}$ can be solved in polynomial time (we would have $\boldsymbol{P}=\boldsymbol{N P}$).

This is considered to be extremely unlikely

Therefore $\boldsymbol{N P}$-completeness provides strong evidence that a problem is inherently difficult.
cf. Long list of important recognition problems that are $N P$-complete and for which no polynomial time algorithms are known.

Do NP-complete problems exist?

Satisfiabilty problem (SAT)

Given m Boolean clauses $C_{1}, \ldots, C_{\mathrm{m}}$ (disjunctions - OR - of Boolean variables y_{j} and their complements y_{j}), does there exist a truth assignment (of values "true" or "false" to the variables) satisfying all the clauses?

Example

$$
\begin{aligned}
& C_{1}:\left(y_{1} \vee y_{2} \vee y_{3}\right) \\
& C_{2}:\left(y_{1} \vee y_{2}\right) \\
& C_{3}:\left(y_{2} \vee y_{3}\right)
\end{aligned}
$$

Truth assignment: $\mathrm{y}_{1}=$ true, $\mathrm{y}_{2}=$ false, $\mathrm{y}_{3}=$ false

First problem proved to be $N \mathcal{P}$-complete:

Theorem (Cook 1971)
SAT is $N \mathcal{P}$-complete.

Stephen A.Cook 1939-

Using the characterization of $N P$ in terms of polynomial time nondeterministic Turing machine and the concept of polynomial time reduction.

reducibility among combinatorial problems ${ }^{+}$

Richard M. Karp

University of California at Berkeley

Abstract: A large class of computational problems involve the determination of properties of graphs, digraphs, integers, arrays of integers, finite families of finite sets, boolean formulas and elements of other countable domains. Through simple encodings from such domains into the set of words over a finite alphabet these problems can be converted into language recognition problems, and we can inquire into their computational complexity. It is reasonable to consider such a problem satisfactorily solved when an algorithm for its solution is found which terminates within a number of steps bounded by a polynomial in the length of the input. We show that a large number of classic unsolved problems of covering, matching, packing, routing, assignment and sequencing are equivalent, in the sense that either each of them possesses a polynomial-bounded algorithm or none of them does.

Show that the recognition versions of 21 discrete optimization problems are $N P$-complete.

How to show that a problem is NP-complete

To show that $P_{2} \in N P$ is $N P$-complete it "suffices" to show that an NP-complete problem P_{1} reduces in polynomial time to P_{2} :

$$
\begin{aligned}
& P \propto P_{1}, \forall P \in N P, \text { and } P_{1} \propto P_{2} \text { implies by transitivity that } \\
& P \propto P_{2}, \forall \mathrm{P} \in N P .
\end{aligned}
$$

Example $\quad P_{1}$: Given undirected G with arc costs and an integer L, \exists a Hamiltonian cycle of total cost $\leq L$?
P_{2} : Given directed G ' with arc costs and an integer L^{\prime}, \exists a Hamiltonian circuit of total cost $\leq L^{\prime}$?
$P_{2} \in N P$ and $P_{1} \propto P_{2}$ with $P_{1} N P$-complete
E. Amaldi - Foundations of Operations Research - Politecnico di Milano

Other examples of $N P$-complete problems

- Given undirected $G=(N, E)$, does there exist a Hamiltonian cycle? (Karp 74)
- Given directed $G=(N, A)$, two nodes s and t, and an integer L, \exists a simple path (with distinct intermediate nodes) from s to t containing a number of $\operatorname{arcs} \geq L$? (exercise 3.4)
- Given directed $G=(N, A)$ with arc costs, two nodes s and t, and an integer L, \exists a simple path from s to t of total cost $\leq L$?
(exercise 3.4)
- Given a linear system $\mathrm{Ax} \geq \mathbf{b}$ with integer coefficients and binary variables, \exists a solution $\mathbf{x} \in\{0,1\}^{n}$? (pages 32-33)

$N P$-hard problems

Definition: A problem is $N P$-hard if every problem in $N \mathcal{P}$ can be reduced to it in polynomial time (even if it does not belong to $N P$).

Example TSP is $N P$-hard.
Indeed, TSP-r (does there exist a Hamiltonian circuit of total cost $\leq L$?) is $N P$-complete.

Observation: All optimization problems with an $N \mathcal{P}$-complete recognition version are $N P$-hard.

Integer Linear Programming (ILP):
Given A $m \times n, \mathbf{b} m \times 1$ and $\mathbf{c} n \times 1$ with integer coefficients, find \mathbf{x} $\in\{0,1\}^{n}$ that satisfies $\mathrm{Ax} \geq \mathbf{b}$ and minimizes $\mathbf{c}^{\mathrm{T}} \mathbf{x}$.

Proposition (Karp 74): ILP is NP-hard. (also exercise 3.3)

Proof We show that ILP recognition version is $N \boldsymbol{P}$-complete.
$\underline{\text { ILP-r: }}$ Given $\mathrm{Ax} \geq \mathbf{b}$ with integer coefficients, \exists a solution $\mathbf{x} \in\{0,1\}^{n}$?

1) ILP-r belongs to $N \mathcal{P}$ since: i) it is a recognition problem, ii) given a solution vector $\mathbf{x} \in\{0,1\}^{n}$ we can verify in polynomial time that it satisfies all inequalities of $\mathbf{A x} \geq \mathbf{b}$.
2) Show that the NP-complete problem SAT can be transformed in polynomial time to ILP-r.

For any instance I_{1} of SAT we can construct in polynomial (linear) time a special instance I_{2} of ILP-r as follows:

$$
I_{1} \text { of SAT: }
$$

$$
\begin{aligned}
& \left(y_{1} \vee y_{2} \vee y_{3}\right) \\
& \left(\bar{y}_{1} \vee \bar{y}_{2}\right) \\
& \left(y_{2} \vee y_{3}\right) \\
& y_{\mathrm{i}} \in\{\text { true, false }\} \quad \forall \mathrm{i} \in\{1,2,3\}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2} \text { of ILP-r: } \\
& x_{1}+x_{2}+x_{3} \geq 1 \\
& \left(1-x_{1}\right)+\left(1-x_{2}\right) \geq 1 \\
& x_{2}+\left(1-x_{3}\right) \geq 1 \\
& x_{\mathrm{i}} \in\{0,1\} \quad \forall \mathrm{i} \in\{1,2,3\}
\end{aligned}
$$

and, clearly, the answer to I_{1} is "yes" if and only if the answer of I_{2} is "yes".

Other examples of $N P$-hard problems

- Given directed $G=(N, A)$ with arc costs, two nodes s and t, find a simple path from s to t of maximum total cost. (exercise 3.4)
- Given directed $G=(N, A)$ with arc costs, two nodes s and t, find a simple path from s to t of minimum total cost. (exercise 3.4)
-....

