4.3 Basic feasible solutions and vertices of polyhedra

Due to the fundamental theorem of Linear Programming, to solve any LP it 'suffices' to consider the vertices (finitely many) of the polyhedron P of the feasible solutions.

Since the geometrical definition of vertex cannot be exploited algorithmically, we need an algebraic characterization.

Which are the vertices of $P=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}}: A \underline{x} \leq \underline{b}, \underline{x} \geq 0\right\}$ with only inequalities?

Example: $\quad \min -x_{1}-3 x_{2}$

$$
\begin{gathered}
\text { s.t. } x_{1}+x_{2} \leq 6 \text { (I) } \\
2 x_{1}+x_{2} \leq 8 \text { (II) } \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Vertex corresponds to the intersection of the hyperplanes associated to n inequalities.

Example: $n=2$
Vertex (6) is the intersection of hyperplanes of (I) and (II), i.e., solution of equations $x_{1}+x_{2}=6$ and $2 x_{1}+x_{2}=8$.

What about the vertices of polyhedra expressed in standard form?

$$
P=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}}: A \underline{x}=\underline{b}, \underline{x} \geq 0\right\}
$$

Easier to describe if we start from a polyhedron

$$
P=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}}: A \underline{x} \leq \underline{b}, \underline{x} \geq 0\right\},
$$

transform it into standard form

$$
P^{\prime}=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}}: A \underline{x}+\underline{s}=\underline{b}, \underline{x}, \underline{s} \geq 0\right\}
$$

and rename: $\mathrm{A}:=[\mathrm{A} \mid \mathrm{I}], \underline{x}:=[\underline{x} \mid \underline{s}]$.

Example:

$$
\begin{gathered}
(P) x_{1}+x_{2} \leq 6 \text { (I) } \\
2 x_{1}+x_{2} \leq 8 \text { (II) } \\
x_{1}, x_{2} \geq 0
\end{gathered} \quad \longleftrightarrow \quad \begin{array}{r}
\left(P^{\prime}\right) x_{1}+x_{2}+s_{1}=6 \\
2 x_{1}+x_{2}+s_{2}=8 \\
x_{1}, x_{2}, s_{1}, s_{2} \geq 0
\end{array}
$$

Taking the intersection of the lines associated to (I) and (II) in P, amounts in P ' to let $s_{1}=s_{2}=0$.

Observation: Every constraint in P corresponds to a slack variable in P^{\prime}, when the slack variable is set to 0 the constraint is satisfied with $=$.

Example: $s_{1} \leftrightarrow x_{1}+x_{2} \leq 6, x_{1} \leftrightarrow x_{1} \geq 0$
Vertex of P is the intersection of n inequalities in P^{\prime} it is equivalent to set the corresponding variables in P 'to 0 .

Example (continued): Compute all the intersections

$$
\begin{array}{r}
x_{1}+x_{2}+s_{1}=6 \\
2 x_{1}+x_{2}+s_{2}=8 \tag{II}\\
x_{1}, x_{2}, s_{1}, s_{2} \geq 0
\end{array}
$$

1) $x_{1}=0, x_{2}=0 \Rightarrow s_{1}=6, s_{2}=8$
2) $x_{1}=0, s_{1}=0 \Rightarrow x_{2}=6, s_{2}=2$
3) $x_{1}=0, s_{2}=0 \Rightarrow x_{2}=8, s_{1}=-2$
4) $x_{2}=0, s_{1}=0 \Rightarrow x_{1}=6, s_{2}=-4$
5) $x_{2}=0, s_{2}=0 \Rightarrow x_{1}=4, s_{1}=2$

The intersections where some x_{j} or s_{i} are <0 yield infeasible solutions.
6) $s_{1}=0, s_{2}=0 \Rightarrow x_{1}=2, x_{2}=4$

Which are the vertices of a polyhedron in standard form?

Example:
$P=\left\{\underline{x} \in \mathrm{R}^{3}: x_{1}+x_{2}+x_{3}=1, \underline{x} \geq 0\right\}$

Property: For any polyhedron $P=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}}: A \underline{x}=\underline{b}, \underline{x} \geq 0\right\}$

- the facets (edges in R^{2}) are obtained by setting one variable to 0 ,
- the vertices are obtained by setting $n-m$ variables to 0 .

In the example: $3-1=2$ variables set to 0 for vertices.

Algebraic characterization of the vertices

Consider any $P=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}}: A \underline{x}=\underline{b}, \underline{x} \geq 0\right\}$ in standard form.
Assumption: $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ of rank m (A is of full rank)
Equivalent to assume that there are no "redundant" constraints.
Example: $2 x_{1}+x_{2}+x_{3}=2$ (I)

$$
\begin{aligned}
x_{1}+x_{2} & =1 \text { (II) } \\
x_{1}+x_{3} & =1 \text { (III) } \\
x_{1}, x_{2}, & x_{3}
\end{aligned}
$$

Since $(\mathrm{I})=(\mathrm{II})+(\mathrm{III})$,
then (I) can be dropped.

If $m=n, \exists$ unique solution of $A \underline{x}=\underline{b} . \quad\left(\underline{x}=A^{-1} \underline{b}\right)$
If $m<n, \exists \infty$ solution of $A \underline{x}=\underline{b}$: the system has n - m degrees of freedom ($n-m$ variables can be fixed arbitrarily). If we fix them to 0 , we get a vertex.

$$
P=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}}: A \underline{x}=\underline{b}, \underline{x} \geq 0\right\}
$$

n variables, m constraints, A in $\mathrm{R}^{m \times n}$

Definition: A basis of such a matrix A is a subset of m columns of A that are linearly independent and form an $m \times m$ non singular matrix B.

$$
A=\underbrace{}_{\underbrace{B}: \begin{array}{lll}
B
\end{array} \quad \begin{array}{l}
\text { First permute the columns of } \\
A \text {, then partition } A \text { into }[B \mid N]
\end{array}]}
$$

Let

$$
\left.\underline{x}=\left(\begin{array}{c}
\underline{x}_{B} \\
--- \\
\underline{x}_{N}
\end{array}\right)\right\} \begin{array}{ll}
m \text { components } \\
n-m \text { components }
\end{array}
$$

Any system $A \underline{x}=\underline{b}$ can be written as

$$
\overline{B \underline{x}_{B}+N \underline{x}_{N}=\underline{b}} \quad \mathrm{~B} \text { is nonsigular }
$$

For any set of values for \underline{X}_{N}, we have

$$
\underline{X}_{B}=B^{-1} \underline{b}-B^{-1} N \underline{x}_{N}
$$

Definitions:

- A basic solution is a solution obtained by setting $\underline{x}_{N}=\underline{0}$ and, consequently, letting $\underline{x}_{B}=B^{-1} \underline{b}$.
- A basic solution with $\underline{x}_{B} \geq 0$ is a basic feasible solution.
- The variables in \underline{x}_{B} are the basic variables and those in \underline{X}_{N} are the non basic variables.

Note: \underline{x}_{B} satisfies $A \underline{x}=\underline{b}$ by construction.

Theorem: $\quad \underline{x} \in \mathbb{R}^{\mathrm{n}}$ is a basic feasible solution
if and only if
\underline{x} is a vertex of $P=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\right\}$.

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 3 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \quad \underline{b}=\left(\begin{array}{l}
4 \\
2 \\
3 \\
6
\end{array}\right) \\
& =2
\end{aligned}
$$

$\min z=2 x_{1}+x_{2}+5 x_{3}$
s.t.

$$
x_{1}+x_{2}+x_{3}+x_{4}
$$

$$
x_{3}+x_{6}=3
$$

$$
3 x_{2}+x_{3} \quad+x_{7}=6
$$

$$
x_{i} \geq 0 \quad i=1, \ldots, 7
$$

Choosing columns 4, 5, 6, 7, we have:

$$
B=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
B^{-1}=B \Rightarrow \underline{x}_{B}=B^{-1} \underline{b}=\underline{b} \geq \underline{0}
$$

basic feasible solution

Example (continued):

$$
\begin{array}{lll}
\min \mathrm{z}=2 x_{1}+x_{2}+5 x_{3} & \\
\text { s.t. } \begin{array}{rlr}
x_{1}+x_{2}+x_{3}+x_{4} & =4 \\
x_{1} & +x_{5} & =2 \\
x_{3} & +x_{6} & =3 \\
3 x_{2}+x_{3} & +x_{7} & =6 \\
x_{i} \geq 0 & i=1, \ldots, 7
\end{array}
\end{array}
$$

$$
A=\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 3 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \quad \underline{b}=\left(\begin{array}{l}
4 \\
2 \\
3 \\
6
\end{array}\right)
$$

Choosing columns $2,5,6,7$, we have:

$$
B^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
\end{array}\right) \quad \Rightarrow \quad \underline{x}_{B}=\left(\begin{array}{c}
4 \\
2 \\
3 \\
-6
\end{array}\right) \quad \text { infeasible! }
$$

$$
\begin{aligned}
& B=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{array}\right) \\
& \text { ible! }
\end{aligned}
$$

Number of basic feasible solutions

At most one for each choice of $n-m$ variables out of n (nonbasic variables)
\# basic feasible solutions $\leq\binom{ n}{n-m}=\frac{n!}{(n-m)!(n-(n-m))!}=\binom{n}{m}$

