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4.5 Simplex method

min   z = cTx 
s.t.

Ax = b
x ≥ 0

LP in standard form:

Examine a sequence of basic feasible solutions with non
increasing objective function values until an optimal solution is
reached or the LP is found to be unbounded (G. Dantzig 1947).

At each iteration, we move from a basic feasible solution to a
“neighboring” basic feasible solution.

George Dantzig (1914-2005)
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Generate a path along the edges of the polyhedron of the feasible solutions 
until an optimal vertex is reached.

a sequence of adjacent vertices

Geometrically:

c
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Given the correspondence between the basic feasible solutions and the 
vertices, we need to describe how to :

• Find an initial vertex or establish that the LP is infeasible.
By applying the same method to another LP, see end of chapter.

• Move from a current vertex to a better adjacent vertex (in terms
of objective function value) or establish that the LP is unbounded.

• Determine whether the current vertex is optimal.
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4.5.1  Move to an adjacent vertex

Observation: When moving from the current vertex to an adjacent vertex, 
we substitute one column of B (that of s2) with one column of N (that of x1).

x1 + x2 + s1 = 6     (I)

2x1 + x2 + s2 = 8     (II)

x1, x2, s1, s2 ≥0

1)

2)

5)
4)

6)

3)

x1

x2

(I)(II)

P

Example:

Move from vertex 1) to vertex 5):

In  1) x1 = 0, x2 = 0 ⇒ s1 = 6,  s2 = 8 with xB=(s1,s2) and xN=(x1,x2)
In  5) x2 = 0, s2 = 0 ⇒ x1 = 4,  s1 = 2 with xB=(x1,s1) and xN=(x2,s2)

Thus x1 enters the basis B and s2 exits the basis B.
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By expressing the basic variables in terms of the non basic variables, we 
obtain

s1 = 6 - x1 - x2

s2 = 8 - 2x1 - x2

Now we increase x1 while keeping x2 = 0. 1)

2)

5)
4)

6)

3)

x1

x2

(I)(II)

P

Since s1 = 6 - x1≥0 implies x1≤ 6 and s2 = 8 - 2x1 ≥0 implies x1 ≤ 8/2=4,
the upper limit on the increase of x1 is: x1 ≤ min{6, 4}=4.

We move from vertex 1) to vertex 5) by letting x1 enter the basis and s2
exit the basis (s1= 2 and s2 = 0).

Note: When x1 = 6, we obtain the infeasible basic solution 4).
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BxB + NxN = b

1 1
B N B Nx B Nx B b x Nx b     

General case:

Given a basis B, the system                

can be expressed in canonical form

which emphasizes the basic feasible solution (xB,xN)=(B-1b,0).

1
for 1,...

n

ij j i
j=

Ax b a x =b i= ,m 

B-1B xB + B-1N xN = B-1b

I bN

This amounts to pre-multiply the system by B-1 :
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1
for 1,...,

i j

n m

B ij N i
j

x a x b i m




  
I xB + N xN = b

In the canonical form

the basic variables are expressed in terms of the non basic variables:

xB = b - N xN.

If we increase the value of a non basic xs (from value 0) while
keeping all the other non basic variables to 0, the system becomes

 for 1,...,
i iB is s i B i is sx a x b x b a x i m     
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To guarantee                 for each i, we need to satisfy  

The value of xs can be increased up to

The value of the basic variable xr of index

decreases to 0 and exits from the basis.

- 0  for 0i
i is s s is

is

bb a x x a
a

   

*

1,...,
min  for 0i

isi m
is

b a
a




 
  

 

1,...,
arg min  for 0i

is
i m is

br a
a

 
  

 

0
iBx 

If ais ≤ 0  for every i, there 
is no limit to the increase 

of xs
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4.5.2  Reduced costs and optimality test

Given a LP         min{ cTx : Ax = b,  x ≥0 }  

and a feasible basis B of A,  Ax = b can be rewritten as

B xB + N xN = b  xB = B-1b - B-1N xN

with  B-1b ≥0.

Basic feasible solution: xB = B-1b,  xN = 0
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By substitution we express the objective function in terms of only the 
non basic variables (for the current basis B):

z0 = cost of the basic 
feasible solution   
xB = B-1b,  xN = 0

only in terms of the 
non basic variables

B-1b – B-1NxN
xN

xB
xN

cTx = (cT
B cT

N) =  (cT
B cT

N)

cTx = cT
B B-1b – cT

B B-1NxN + cT
N xN

=  cT
B B-1b +  ( cT

N – cT
B B-1N ) xN

reduced costs of the non basic 
variables xN

cT
N ≔ cT

N – cT
B B-1N
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cj = change in the objective function value if the non basic variable xj
is increased by 1 unit while the other non basic variables are kept
equal to 0.

c is the vector of reduced costs with respect to the basis B.

0T cT
N

I

cT ≔ cT – cT
B B-1A = [cT

B – cT
B B-1B, cT

N – cT
B B-1N]

Definition:

Defined for non basic as well as 
basic variables

The solution value changes by z =  cj
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Optimality test

cT ≥ 0T implies that
cTx = cT

B B-1b + cT
N xN≥ cT

B B-1b  x ≥ 0, A x = b.
Proof

Observation: This optimality condition is sufficient but in general not necessary. 

Given any LP min{ cTx : Ax = b,  x ≥0 } ( max{…} ) and a feasible basis 

B. If all reduced costs of the non basic variables cN are non negative (non 

positive) the basic feasible solution (xT
B , xT

N), where  xB = B-1b ≥ 0 and 

xN = 0, of cost cT
B B-1b is optimal.



E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 13

Example: 1 1 1 0
1 1 0 1

A
 

  
 

1)

2)

4) x1

x2

(I)

(II)

P

In (4): xB = (x1,s2) = (1,2) and z = -1       
xN = (x2 s1)

1 0
1 1

B
 

  
 

 01B
Tc  1 0T

Nc  

1 1 0
1 1

B  
   

 1 2 0T T T
N N Bc c c B N   

1 1
1 0

N
 

  
 

 1 1 0 0Tc   

Since c2 =-2 < 0, 
increasing x2 to 1 
(keeping the other 
non basic variables 
to 0) we improve 
the solution by -2

min – x1 – x2

x1 – x2 + s1 = 1   (I)

x1 + x2 + s2 = 3  (II)

x1, x2, s1, s2 ≥0

c
3)

Increasing x2 from 0 to 1 
keeping s1=0, we 

proceed along the edge
to (x1,x2) = (2,1), z = -3
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4.5.3  Changing basis (for minimization LP)

Consider a feasible basis B and a non basic xs (in xN) with reduced
cost cs < 0.

The new basis differs w.r.t. the previous one by a single column
(adjacent vertices).

Increase xs as much as possible (xs “enters the basis”) while keeping
the other non basic variables equal to 0.

The basic variable xr (in xB) such that xr ≥ 0 imposes the tightest
upper bound  on the increase of xs (xr leaves the basis).

If  > 0, the new basic feasible solution has a better objective
function value.
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B-1B xB + B-1N xN = B-1b

To go from the canonical form of the current basic feasible solution

to that of an adjacent basic feasible solution, it is not necessary to
compute B-1 from scratch.

B-1 of the new basis B can be obtained incrementally by applying to
the inverse of the previous basis (which differs w.r.t a single
column) a unique “pivoting” operation.
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“Pivoting” operation

1. Select a coefficient ars ≠ 0  (the “pivot”)
2. Divide the r-th row by ars

3. For each row i with i ≠ r and ais≠ 0, substract the resulting r-th row 
multiplied by ais. 

3/2
-4
5

½ 1 ½ - ½ 0
-2 0 -3 2 1
2 0 3 1 0

3
2
5

1 2 1 -1 0
0 4 -1 0 1
2 0 3 1 0

pivot

r →

↑
s

A b



Same operations used in the Gaussian elimination method to solve
systems of linear equations.

Given Ax = b

do not affect the set of feasible solutions
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Example:

pivot
r →

↑
s columns of basic variables

System in canonical form w.r.t. the basis with s1 and s2 basic  (vertex 1):

x1

x2

(I)(II)

P

min - x1 - x2
s.t. x1 + x2 + s1 = 6 (I)

2x1 + x2 + s2 = 8   (II)
x1, x2 , s1 , s2 ≥ 0

c

6)

1) 5)

s1 = 6 - x1 - x2
s2 = 8 - 2x1 - x2

x1 =  4 - ½ x2 - ½ s2 
(4 - ½ x2 - ½ s2) + x2 + s1 = 6  

System in canonical form w.r.t. the basis with x1 and s1 basic  (vertex 5):

x1 + x2 + s1       = 6 
2 x1 + x2    + s2   = 8 

x1 enters the basis 
and s2 exits

Move from vertex 1) to vertex 5)

½ x2 + s1 - ½ s2   = 2  
x1 + ½ x2           + ½ s2  = 4 ⇒
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1) Which non basic variable enters the basis?

• Any one with reduced cost cj < 0. 
• One that yields the maximum z w.r.t.  z = cB

TB-1b (the actual
decrement z also depends on ).

• Bland’s rule :  s = min{ j : cj < 0}.

Choice of the 
pivot column s

Moving to an adjacent vertex (basic feasible solution)

Goals :  i) improve the objective function value   

ii) preserve feasibility

For maximization problems :    cj > 0 
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 The minimization problem is unbounded!

Unboundedness:  If  cj < 0 with aij ≤ 0  i, no element of the 
j-th column can play the role of a pivot.

Thightest upper bound on increase of xs

otherwise no limit!
Choice of the pivot row r

2) Which basic variable leaves the basis?

Min ratio test: index i with smallest = * among those with ais>0.

– Bland’s rule :  r = min{ i : = *, ais> 0}
– randomly…

is

i

a
b

is

i

a
b
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4.5.4  “Tableau” representation

z = cTx
System

Ax = b

Initial tableau:
- right hand side of the objective function

↑
right hand side vector

m rows

← objetive function0 cT

b A

x1 … xn

with (implicit) nonnegativity constraints
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0 cT
B cT

N

b B N

x1 …  xm xm+1 … xn

-1
0
⋮
0

z

Consider a basis B and a partition A = [B N]

0 = cTx – z

by “pivoting” operations (or pre-multiplying by B-1) we put the  
tableau in canonical form with respect to B:

-z0 0 … 0 cT
N

b I N

x1 …  xm xm+1 … xn

basic variables

-z
xB[1]
⋮

xB[m] b = B-1b

z = cT
B B-1b + cT

N xN

z0
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Example:

Tableau w.r.t. the basis with columns 3, 4:

min z = - x1 - x2
6x1 + 4x2 + x3 = 24
3x1 – 2x2 + x4  = 6

xi ≥ 0      i =1,…, 4

x1 x2 x3 x4

-z 0 -1 -1 0 0
x3 24 6 4 1 0
x4 6 3 -2 0 1

pivot

I2x2

Pivot w.r.t.  amounts to deriving 
an expression for x1 from the pivot 
row and substituting it in all other 
rows.

x1 enters in the basis and x4 exits the basis

r →

s
↓

basis
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Tableau w.r.t. the new basis:

x1 x2 x3 x4

-z 2 0 -5/3 0 1/3
x3 12 0 8 1 -2
x1 2 1 -2/3 0 1/3

basis

corresponding basic feasible solution:

xT = (2, 0, 12, 0)     with    z = -2.

x1 x1

·
⇒

·

6 0

3 1

 reduced costs
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x2 only non basic variable can “enter” the basis (c2 = -5/3 < 0)

x3 only basic variable can “exit” the basis (ars = 8 > 0)

x1 x2 x3 x4

-z 2 0 -5/3 0 1/3
x3 12 0 8 1 -2
x1 2 1 -2/3 0 1/3

r →

s
↓



x1 x2 x3 x4

-z 9/2 0 0 5/24 -1/12
x2 3/2 0 1 1/8 -1/4
x1 3 1 0 1/12 1/6

↑
s

← r

x1 x2 x3 x4

-z 6 ½ 0 ¼ 0
x2 6 3/2 1 ¼ 0
x4 18 6 0 ½ 1

All reduced costs ≥ 0
⇒ optimal basic (feasible) solution:

x*T = (0, 6, 0, 18)  with z* = - 6


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Simplex algorithm (LP with min)

],[
]0,[

sia
ia

Procedure pivot(r,s)?

reduced costs

BEGIN

Let B[1],…,B[m] be the column indices of the inital feasible basis B;

Construct the initial tableau A = {a[i,j]: 0≤i≤m, 0≤j≤n} in canonical 
form w.r.t. B;

unbounded := false;  optimal := false;

WHILE (optimal = false) AND (unbounded = false) THEN

IF a[0,j] ≥ 0  j=1,…,m THEN optimal := true; /* for LP with min */

ELSE

Select a non basic variable xs with a[0,s] < 0;

IF a[i,s] ≤ 0  i=1,…,m  THEN unbounded := true;

ELSE

Determine index r that minimizes

with 1 ≤ i ≤ m and a[i,s] > 0;

pivot(r,s)    /* update tableau */

B[r] := s;

END-IF

END-IF

END
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4.5.5 Degenerate basic feasible solutions and convergence

Definition: A basic feasible solution x is degenerate if it contains at
least one basic variable =0.

x with more than n-m zeroes correspond to several distinct bases!

Same vertex:

More than n constraints ( the m of Ax = b and more than n-m among 
the n of x  0 ) are satisfied with equality (“active”).

x
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 One can cycle through a sequence of  “degenerate” bases
associated to the same vertex.

In the presence of degenerate basic feasible solutions (BFSs), a
basis change may not decrease the objective function value:

If the current BFS is degenerate, one can have *=0 and hence
the new BFS is identical (same vertex).

Note that a degenerate BFS can arise from a non degenerate one:
even if * > 0, several basic variables may go to 0 when xs is
increased to *.
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Several “anticycling” rules have been proposed for the choice of the 
variables that enter and exit the bases (indices r and s).

finite number of pivots

n
m

Proposition:    The Simplex algorithm with Bland’s rule terminates

after ≤ iterations.    

Bland’s rule: Among all candidate variables to enter/exit the basis
(xs / xr) always select the one with smallest index.

Robert. Bland
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However the Simplex algorithm is overall very efficient.

Extensive experimental campaigns:

The number of iterations grows linearly w.r.t. m ( m ≤  . ≤ 3m) and 
very slowly ( logarithmically) w.r.t. n.

In some “pathological” cases (see e.g. Klee  Minty 72), the number
of iterations grows exponentially w.r.t. n and/or m.
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4.5.6 Two-phase simplex method

Phase 1:  Determine an intial basic feasible solution.

min z = x1 + x3
x1 + 2x2 ≤ 5

x2 + 2x3 = 6

x1, x2, x3 ≥ 0

Example:
 x1 + 2x2 + x4 = 5

x4 ≥ 0∄ a submatrix I2x2 of A!

min   z = cTx
Ax = b

x ≥ 0
Assumption: b ≥ 0Given (P)
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Auxilliary problem with artificial variables yi, 1≤ i ≤ m,

∑
1

    min
m

i
iyv





A x + I y = b

x ≥ 0, y ≥ 0

∃ an obvious initial basic feasible 
solution y = b ≥ 0 and x = 0

(PA)

1) If v* > 0, then (P) is infeasible.

2) If v* = 0, clearly y* = 0 and x* is a basic feasible solution of (P).
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For  2)  there are two cases:

• If yi is non basic ∀i, with 1 ≤ i ≤ m, delete the corresponding
columns and obtain a tableau in canonical form w.r.t. a basis;
the row of z must be determined by substitution.

cf. example

• If ∃ a basic yi (the basic feasible solution is degenerate), we
perform a «pivot» operation w.r.t. a coefficient ≠ 0 of the row
of yi so as to “exchange” yi with a non basic variable xj.
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x1 x2 x3 y1 y2

-v -4 2 -2 2 0 0
y1 2 0 1 4 1 0
y2 2 -2 1 -6 0 1

Example: min z = x1+ x2+10 x3

x2 + 4x3 = 2

-2x1 + x2 - 6x3 = 2

x1, x2, x3 ≥ 0

Put  v = y1+y2 in canonical form
by substituting the expression of 
y1 and y2  in terms of x1, x2 and x3. 

(PA)

min v = y1+ y2

x2+ 4x3+ y1 = 2

-2x1+ x2 - 6x3+ y2 = 2

x1, x2, x3 , y1, y2 ≥ 0

(P)



E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 34

x1 x2 x3 y1 y2

-v -4 2 -2 2 0 0
y1 2 0 1 4 1 0
y2 2 -2 1 -6 0 1

x1 x2 x3 y1 y2

-v 0 2 0 10 2 0
x2 2 0 1 4 1 0
y2 0 -2 0 -10 -1 1

optimal value v* = 0

x* = (0, 2, 0)

y* = (0, 0) 
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By selecting as «pivot» the coefficient –2 of the row of y2, we obtain: 

Equivalent
optimal basis

⇒ optimal basic feasible solution of (PA)                

x = (0, 2, 0) 

is a basic feasible solution of (P).

x1 x2 x3 y1 y2

-v 0 0 0 0 1 1
x2 2 0 1 4 1 0
x1 0 1 0 5 ½ -½

The column of I
has been transferred
in the “area” the 
original xj variables.

0
1
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z = x1+x2+10 x3 ≠ canonical form

non basic variable
By substituting:

x2 = 2 - 4x3

x1 =    - 5x3
⇒ z = 2 + x3

Tableau corresponding to the initial
basic feasible solution of (P).

Since the basic feasible solution found is (already) optimal, here no 
need for the second phase!

x1 x2 x3

-z -2 0 0 1
x2 2 0 1 4
x1 0 1 0 5
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4.5.7  Polynomial-time algorithms for LP

• Interior point methods (N. Karmarkar 1984,…)

Very efficient variants (e.g. barrier methods) for some types of
instances (e.g. sparse and large-scale).

Narendra Karmarkar (1957-)

• Ellipsoid method (L. Khachiyan 1979)

Theoretically important.


