4.5 Simplex method

LP in $\underline{\text { standard form: } \min } \mathrm{z}=\underline{c}^{T} \underline{x}$

$$
\begin{aligned}
& \text { s.t. } \\
& A \underline{x}=\underline{b} \\
& \underline{x} \geq \underline{0}
\end{aligned}
$$

Examine a sequence of basic feasible solutions with non increasing objective function values until an optimal solution is reached or the LP is found to be unbounded (G. Dantzig 1947).

At each iteration, we move from a basic feasible solution to a "neighboring" basic feasible solution.

Geometrically:

Generate a path along the edges of the polyhedron of the feasible solutions until an optimalvertex is reached.
a sequence of adjacent vertices

Given the correspondence between the basic feasible solutions and the vertices, we need to describe how to :

- Find an initial vertex or establish that the LP is infeasible. By applying the same method to another LP, see end of chapter.
- Move from a current vertex to a better adjacent vertex (in terms of objective function value) or establish that the LP is unbounded.
- Determine whether the current vertex is optimal.

4.5.1 Move to an adjacent vertex

Example: $\quad x_{1}+x_{2}+s_{1}=6$

$$
\begin{equation*}
2 x_{1}+x_{2}+s_{2}=8 \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}, x_{2}, s_{1}, s_{2} \geq 0 \tag{II}
\end{equation*}
$$

Move from vertex 1) to vertex 5):
In 1) $x_{1}=0, x_{2}=0 \Rightarrow s_{1}=6, s_{2}=8$ with $x_{B}=\left(s_{1}, s_{2}\right)$ and $x_{N}=\left(x_{1}, x_{2}\right)$
In 5) $x_{2}=0, s_{2}=0 \Rightarrow x_{1}=4, s_{1}=2$ with $x_{B}=\left(x_{1}, s_{1}\right)$ and $x_{N}=\left(x_{2}, s_{2}\right)$
Thus x_{1} enters the basis B and s_{2} exits the basis B.

Observation: When moving from the current vertex to an adjacent vertex, we substitute one column of B (that of s_{2}) with one column of N (that of x_{1}).

By expressing the basic variables in terms of the non basic variables, we obtain

$$
\begin{aligned}
& s_{1}=6-x_{1}-x_{2} \\
& s_{2}=8-2 x_{1}-x_{2}
\end{aligned}
$$

Now we increase x_{1} while keeping $x_{2}=0$.

Since $s_{1}=6-x_{1} \geq 0$ implies $x_{1} \leq 6$ and $s_{2}=8-2 x_{1} \geq 0$ implies $x_{1} \leq 8 / 2=4$, the upper limit on the increase of x_{1} is: $x_{1} \leq \min \{6,4\}=4$.

We move from vertex 1) to vertex 5) by letting x_{1} enter the basis and s_{2} exit the basis ($s_{1}=2$ and $s_{2}=0$).

Note: When $x_{1}=6$, we obtain the infeasible basic solution 4).

General case:

Given a basis B, the system

$$
B \underline{x}_{B}+N \underline{x}_{N}=\underline{b}
$$

$$
A \underline{x}=\underline{b} \Leftrightarrow \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \text { for } i=1, \ldots, m
$$

can be expressed in canonical form

$$
\underline{x}_{B}+B^{-1} N \underline{x}_{N}=B^{-1} \underline{b} \Leftrightarrow \underline{x}_{B}+\bar{N} \underline{x}_{N}=\underline{\bar{b}}
$$

which emphasizes the basic feasible solution $\left(\underline{x}_{B}, \underline{x}_{N}\right)=\left(B^{-1} \underline{b}, \underline{0}\right)$.

This amounts to pre-multiply the system by B^{-1} :

$$
\underbrace{B^{-1} B}_{\mathrm{I}} \underline{x}_{B}+\underbrace{B^{-1} N}_{\overline{\mathrm{N}}} \underline{x}_{N}=\underbrace{B^{-1} \underline{b}}_{\underline{b}}
$$

In the canonical form

$$
\begin{aligned}
& x_{B_{i}}+\sum_{j=1}^{n-m} \bar{a}_{i j} x_{N_{j}}=\bar{b}_{i} \text { for } i=1, \ldots, m \\
& I \underline{x}_{B}+\bar{N} \underline{x}_{N}=\underline{\bar{b}}
\end{aligned}
$$

the basic variables are expressed in terms of the non basic variables:

$$
\underline{x}_{B}=\underline{\bar{b}}-\bar{N} \underline{x}_{N} .
$$

If we increase the value of a non basic x_{s} (from value 0) while keeping all the other non basic variables to 0 , the system becomes

$$
x_{B_{i}}+\bar{a}_{i s} x_{s}=\bar{b}_{i} \Leftrightarrow x_{B_{i}}=\bar{b}_{i}-\bar{a}_{i s} x_{s} \text { for } i=1, \ldots, m
$$

To guarantee $x_{B_{i}} \geq 0$ for each i, we need to satisfy

$$
\bar{b}_{i}-\bar{a}_{i s} x_{s} \geq 0 \Leftrightarrow x_{s} \leq \frac{\bar{b}_{i}}{\bar{a}_{i s}} \text { for } \bar{a}_{i s}>0
$$

The value of x_{s} can be increased up to

$$
\theta^{*}=\min _{i=1, \ldots, m}\left\{\frac{\bar{b}_{i}}{\bar{a}_{i s}} \text { for } \bar{a}_{i s}>0\right\} \quad \begin{aligned}
& \text { If } \overline{\mathrm{a}}_{\text {is }} \leq 0 \text { for every } \mathrm{i} \text {, there } \\
& \text { is } \begin{array}{c}
\text { limit to the increase } \\
\text { of } \mathrm{x}_{\mathrm{s}}
\end{array}
\end{aligned}
$$

The value of the basic variable x_{r} of index

$$
r=\underset{i=1, \ldots, m}{\arg \min }\left\{\frac{\bar{b}_{i}}{\bar{a}_{i s}} \text { for } \bar{a}_{i s}>0\right\}
$$

decreases to 0 and exits from the basis.

4.5.2 Reduced costs and optimality test

Given a LP $\quad \min \left\{\underline{c}^{T} \underline{x}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\right\}$
and a feasible basis B of $A, A \underline{x}=\underline{b}$ can be rewritten as

$$
B \underline{x}_{B}+N \underline{x}_{N}=\underline{b} \Rightarrow \underline{x}_{B}=B^{-1} \underline{b}-B^{-l} N \underline{x}_{N}
$$

with $B^{-1} \underline{b} \geq \underline{0}$.

Basic feasible solution: $\underline{x}_{B}=B^{-l} \underline{b}, \underline{x}_{N}=\underline{0}$

By substitution we express the objective function in terms of only the non basic variables (for the current basis B):

$$
\begin{aligned}
& \underline{c}^{T} \underline{x}=\left(\underline{c}^{T} \underline{B}^{T} \underline{\underline{c}}_{N}^{T}\right)\binom{\underline{x}_{B}}{\underline{x}_{N}}=\left(\underline{c}^{T}{ }_{B} \underline{\underline{c}}^{T}{ }_{N}\right)\binom{B^{-1} \underline{b}-B^{-1} N \underline{x}_{N}}{\underline{x}_{N}} \\
& \begin{aligned}
\underline{c}^{T} \underline{x} & =\underline{c}^{T}{ }_{B} B^{-l} \underline{b}-\underline{c}^{T}{ }_{B} B^{-l} N \underline{x}_{N}+\underline{c}^{T}{ }_{N} \underline{x}_{N} \\
& =\underline{c}^{T}{ }_{B} B^{-l} \underline{b}+\left(\underline{c}^{T}{ }_{N}-\underline{c}^{T}{ }_{B} B^{-l} N\right) \underline{x}_{N}
\end{aligned} \Leftarrow \quad \begin{array}{l}
\text { only in terms of the } \\
\text { non basic variables }
\end{array} \\
& =\underbrace{\underline{c}^{T}{ }_{B} B^{-l} \underline{b}}+\underbrace{\left(\underline{c}^{T}{ }_{N}-\underline{c}^{T}{ }_{B} B^{-l} N\right.}_{\underline{\bar{c}}^{T}{ }_{N}:=\underline{c}^{T}{ }_{N}-\underline{c}^{T}{ }_{B} B^{-l} N}) \underline{x}_{N} \\
& z_{0}=\text { cost of the basic } \\
& \underline{\underline{c}}^{T}{ }_{N}:=\underline{\mathcal{c}}^{T}{ }_{N}-\underline{\underline{c}}^{T}{ }_{B} B^{-l} N
\end{aligned}
$$

feasible solution
$\underline{x}_{B}=B^{-l} \underline{b}, \underline{x}_{N}=\underline{0}$
reduced costs of the non basic variables \underline{x}_{N}

$\overline{\bar{c}}$ is the vector of reduced costs with respect to the basis B.

Defined for non basic as well as basic variables
$\bar{c}_{j}=$ change in the objective function value if the non basic variable x_{j} is increased by 1 unit while the other non basic variables are kept equal to 0 .

The solution value changes by $\Delta z=\theta^{*} \bar{c}_{j}$
E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano

Optimality test

Given any $\operatorname{LP} \min \left\{\underline{\underline{c}}^{T} \underline{x}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\right\}(\max \{\ldots\})$ and a feasible basis B. If all reduced costs of the non basic variables $\overline{\underline{c}}_{N}$ are non negative (non positive) the basic feasible solution ($\underline{x}^{T}{ }_{B}, \underline{x}^{T}$), where $\underline{x}_{B}=B^{-l} \underline{b} \geq \underline{0}$ and $\underline{x}_{N}=\underline{0}$, of $\operatorname{cost} \underline{c}^{T}{ }_{B} B^{-1} \underline{b}$ is optimal.

Proof

$$
\begin{aligned}
& \underline{\underline{c}}^{T} \geq \underline{0}^{T} \text { implies that } \\
& \underline{c}^{\underline{T}} \underline{\underline{c}} \underline{\underline{T}}^{T} B^{-1} \underline{b}+\bar{c}^{T}{ }_{N} \underline{x}_{N} \geq \underline{c}^{T}{ }_{B} B^{-1} \underline{b} \quad \forall \underline{x} \geq \underline{0}, A \underline{x}=\underline{b} .
\end{aligned}
$$

Observation: This optimality condition is sufficient but in general not necessary.

Example:

$$
\begin{align*}
& \min -x_{1}-x_{2} \\
& x_{1}-x_{2}+s_{1}=1 \tag{I}\\
& x_{1}+x_{2}+s_{2}=3 \tag{II}\\
& x_{1}, x_{2}, s_{1}, s_{2} \geq 0
\end{align*}
$$

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad N=\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right) \\
\underline{c}^{T}{ }_{B} & =\left(\begin{array}{ll}
-1 & 0
\end{array}\right) \quad \underline{c}^{T}{ }_{N}=\left(\begin{array}{ll}
-1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{r}
B^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \quad \underline{\bar{c}}^{T}{ }_{N}=\underline{c}^{T}{ }_{N}-\underline{c}^{T}{ }_{B} B^{-1} N=\left(\begin{array}{ll}
-2 & 0
\end{array}\right) \\
\text { E. Amaldi -- Foundations of Operations Research -- Politecnic }
\end{array}
$$

Since $\bar{c}_{2}=-2<0$, increasing x_{2} to 1 (keeping the other non basic variables to 0) we improve the solution by -2

4.5.3 Changing basis (for minimization LP)

Consider a feasible basis B and a non basic x_{s} (in \underline{x}_{N}) with reduced $\operatorname{cost} \bar{c}_{s}<0$.

Increase x_{s} as much as possible (x_{s} "enters the basis") while keeping the other non basic variables equal to 0 .

The basic variable $x_{r}\left(\right.$ in $\left.\underline{x}_{B}\right)$ such that $x_{r} \geq 0$ imposes the tightest upper bound θ^{*} on the increase of x_{s} (x_{r} leaves the basis).

If $\theta^{*}>0$, the new basic feasible solution has a better objective function value.

The new basis differs w.r.t. the previous one by a single column (adjacent vertices).

To go from the canonical form of the current basic feasible solution

$$
B^{-1} B \underline{x}_{B}+B^{-1} N \underline{x}_{N}=B^{-1} \underline{b}
$$

to that of an adjacent basic feasible solution, it is not necessary to compute B^{-1} from scratch.
B^{-1} of the new basis B can be obtained incrementally by applying to the inverse of the previous basis (which differs w.r.t a single column) a unique "pivoting" operation.

"Pivoting" operation

Same operations used in the Gaussian elimination method to solve systems of linear equations.

Given $A \underline{x}=\underline{b}$

1. Select a coefficient $\bar{a}_{r s} \neq 0$ (the "pivot")
2. Divide the r-th row by $\bar{a}_{r s}$
3. For each row i with $i \neq r$ and $\bar{a}_{i s} \neq 0$, substract the resulting r-th row multiplied by $\bar{a}_{i s}$.

$$
\begin{aligned}
& \underset{r \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 1 & -1 & 0 \\
0 & 4 & -1 & 0 & 1 \\
2 & 0 & 3 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\underline{b} \\
3 \\
2 \\
5
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 / 2 & 1 & 1 / 2 & -1 / 2 & 0 \\
-2 & 0 & -3 & 2 & 1 \\
2 & 0 & 3 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
3 / 2 \\
-4 \\
5
\end{array}\right]}{ } \\
& \text { do not affect the set of feasible solutions }
\end{aligned}
$$

Example:

$$
\begin{array}{ll}
\min -x_{1}-x_{2} & \\
\text { s.t. } & x_{1}+x_{2}+s_{1} \\
2 x_{1}+x_{2}+s_{2} & =8 \tag{II}\\
x_{1}, x_{2}, s_{1}, s_{2} & \geq 0
\end{array}
$$

Move from vertex 1) to vertex 5)

System in canonical form w.r.t. the basis with s_{1} and s_{2} basic (vertex 1):

$$
\begin{aligned}
& s_{1}=6-x_{1}-x_{2} \quad x_{1}+x_{2}+s_{1}=6 \quad x_{1} \text { enters the basis } \\
& s_{2}=8-2 x_{1}-x_{2} \quad r \rightarrow \underset{\substack{\text { pivot }}}{(2)} x_{1}+x_{2} \underset{\substack{\text { columns of basic variables }}}{+s_{2}=8} \text { and } s_{2} \text { exits }
\end{aligned}
$$

System in canonical form w.r.t. the basis with x_{1} and s_{1} basic (vertex 5):

$$
\begin{aligned}
& x_{1}=4-1 / 2 x_{2}-1 / 2 s_{2} \quad \Rightarrow \quad 1 / 2 x_{2}+s_{1}-1 / 2 s_{2}=2 \\
& \left(4-1 / 2 x_{2}-1 / 2 s_{2}\right)+x_{2}+s_{1}=6 \quad \Rightarrow \quad x_{1}+1 / 2 x_{2} \quad+1 / 2 s_{2}=4 \\
& \text { E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano }
\end{aligned}
$$

Moving to an adjacent vertex (basic feasible solution)

Goals: i) improve the objective function value
ii) preserve feasibility

1) Which non basic variable enters the basis?

Choice of the pivot column s

- Any one with reduced $\operatorname{cost} \bar{c}_{j}<0$.
- One that yields the maximum Δz w.r.t. $z=\underline{c}_{B}^{T} B^{-1} \underline{b}$ (the actual decrement Δz also depends on θ^{*}).
- Bland's rule : $s=\min \left\{j: \bar{c}_{j}<0\right\}$.

For maximization problems: $\bar{c}_{j}>0$

Choice of the pivot row r
2) Which basic variable leaves the basis?

Thightest upper bound on increase of x_{s}

- Bland's rule : $r=\min \left\{i: \frac{\bar{b}_{i}}{\bar{a}_{i s}}=\theta^{*}, \bar{a}_{i s}>0\right\}$
- randomly...

Unboundedness: If $\exists \bar{c}_{j}<0$ with $\bar{a}_{i j} \leq 0 \forall i$, no element of the j-th column can play the role of a pivot.
\Rightarrow The minimization problem is unbounded!

4.5.4 "Tableau" representation

System $\left\{\begin{array}{l}z=\underline{c}^{T} \underline{x} \\ A \underline{x}=\underline{b}\end{array}\right.$
with (implicit) nonnegativity constraints

Initial tableau:

- right hand side of the objective function

E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano

Consider a basis B and a partition $A=[B N]$

| $x_{1} \ldots x_{m}$ | $x_{m+1} \ldots x_{n}$ | z |
| :---: | :---: | :---: | :---: |
| 0 | $\underline{c}^{T}{ }_{B}$ | $\underline{c}^{T}{ }_{N}$ |
| \underline{b} | B | N |

by "pivoting" operations (or pre-multiplying by B^{-1}) we put the tableau in canonical form with respect to B :

$$
\begin{gathered}
z=\underbrace{\underline{c}^{T}{ }_{B} B^{-1} \underline{b}}_{z_{0}}+\underline{\bar{c}}^{T}{ }_{N} \underline{x}_{N} \\
\underline{\bar{b}}=B^{-1} \underline{b}
\end{gathered}
$$

$$
\begin{array}{llll}
\text { Example: } \quad \min \quad & & \\
& z=-x_{1}-x_{2} & & \\
& 6 x_{1}+4 x_{2}+x_{3} & =24 \\
& 3 x_{1}-2 x_{2} & +x_{4}=6 \\
& & x_{i} \geq 0
\end{array} \quad i=1, \ldots, 4
$$

Tableau w.r.t. the basis with columns 3, 4:

Pivot w.r.t. (3) amounts to deriving an expression for x_{1} from the pivot row and substituting it in all other rows.
x_{1} enters in the basis and x_{4} exits the basis

Tableau w.r.t. the new basis:

x_{2} only non basic variable can "enter" the basis ($\bar{c}_{2}=-5 / 3<0$)
x_{3} only basic variable can "exit" the basis ($\bar{a}_{r s}=8>0$)

E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano

Simplex algorithm (LP with min)

```
BEGIN
    Let B[1],...,B[m] be the column indices of the inital feasible basis B;
    Construct the initial tableau A = {a [i,j]: 0\leqi\leqm, 0\leqj\leqn} in canonical
    unbounded := false; optimal := false;
WHILE (optimal = false) AND (unbounded = false) THEN
    IF \overline{a}[0,j] \geq 0 \forall j=1,\ldots,m THEN optimal := true; /* for LP with min */
    ELSE }\mp@subsup{\sigma}{}{\mathrm{ reduced costs}
        Select a non basic variable }\mp@subsup{\textrm{x}}{\textrm{s}}{}\mathrm{ with }\overline{\textrm{a}}[0,\textrm{s}]<0\mathrm{ ;
        IF \overline{a}[i,s] \leq 0 \forall i=1,\ldots,m THEN unbounded := true;
            ELSE
        Determine index r that minimizes }\frac{\overline{a}[i,0]}{\overline{a}[i,s]
        pivot(r,s) /* update tableau */
        B[r] := s;
        END-IF
    END-IF
END
Procedure pivot \((\mathrm{r}, \mathrm{s})\) ?

\subsection*{4.5.5 Degenerate basic feasible solutions and convergence}

Definition: A basic feasible solution \(\underline{x}\) is degenerate if it contains at least one basic variable \(=0\).
\(\underline{x}\) with more than \(n-m\) zeroes correspond to several distinct bases!

Same vertex:


More than \(n\) constraints ( the \(m\) of \(A \underline{x}=\underline{b}\) and more than \(n-m\) among the \(n\) of \(\underline{x} \geq \underline{0}\) ) are satisfied with equality ("active").

In the presence of degenerate basic feasible solutions (BFSs), a basis change may not decrease the objective function value:

If the current BFS is degenerate, one can have \(\theta^{*}=0\) and hence the new BFS is identical (same vertex).

Note that a degenerate BFS can arise from a non degenerate one: even if \(\theta^{*}>0\), several basic variables may go to 0 when \(x_{s}\) is increased to \(\theta^{*}\).
\(\Rightarrow\) One can cycle through a sequence of "degenerate" bases associated to the same vertex.

Several "anticycling" rules have been proposed for the choice of the variables that enter and exit the bases (indices \(r\) and \(s\) ).

Bland's rule: Among all candidate variables to enter/exit the basis \(\left(x_{s} / x_{r}\right)\) always select the one with smallest index.


Robert. Bland
Proposition: The Simplex algorithm with Bland's rule terminates after \(\leq\binom{ n}{m} \xlongequal{\text { iterations. }}=\) finite number of pivots

In some "pathological" cases (see e.g. Klee \& Minty 72), the number of iterations grows exponentially w.r.t. \(n\) and/or \(m\).

However the Simplex algorithm is overall very efficient.
Extensive experimental campaigns:
The number of iterations grows linearly w.r.t. \(m(m \leq . \leq 3 m)\) and very slowly ( \(\approx\) logarithmically) w.r.t. \(n\).

\subsection*{4.5.6 Two-phase simplex method}

Phase 1: Determine an intial basic feasible solution.

Example: \(\quad \min \quad z=x_{1}+x_{3}\)
\[
\begin{aligned}
x_{1}+2 x_{2} & \leq 5 \rightarrow x_{1}+2 x_{2}+x_{4}=5 \\
x_{2}+2 x_{3} & =6
\end{aligned}
\]
\(\nexists\) a submatrix \(I_{2 x 2}\) of \(A!\quad x_{1}, x_{2}, x_{3} \geq 0 \quad x_{4} \geq 0\)

Given \((P)\)
\[
\min z=\underline{c}^{T} \underline{x}
\]
\[
A \underline{x}=\underline{b}
\]

Assumption: \(\underline{b} \geq \underline{0}\)
E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano

\section*{Auxilliary problem with \(\underline{\text { artificial variables } y_{i}, 1 \leq i \leq m, ~}\)}
\[
\begin{aligned}
\min & v=\sum_{i=1}^{m} y_{i} \\
& A \underline{x}+I \underline{y}=\underline{b} \\
& \underline{x} \geq \underline{0}, \underline{y} \geq \underline{0}
\end{aligned}
\]

\title{
\(\exists\) an obvious initial basic feasible
} solution \(\underline{y}=\underline{b} \geq \underline{0}\) and \(\underline{x}=\underline{0}\)
1) If \(v^{*}>0\), then \((P)\) is infeasible.
2) If \(v^{*}=0\), clearly \(\underline{y}^{*}=\underline{0}\) and \(\underline{x}^{*}\) is a basic feasible solution of \((P)\).

For 2) there are two cases:
- If \(y_{i}\) is non basic \(\forall i\), with \(1 \leq i \leq m\), delete the corresponding columns and obtain a tableau in canonical form w.r.t. a basis; the row of \(z\) must be determined by substitution.
- If \(\exists\) a basic \(y_{i}\) (the basic feasible solution is degenerate), we perform a «pivot» operation w.r.t. a coefficient \(\neq 0\) of the row of \(y_{i}\) so as to "exchange" \(y_{i}\) with a non basic variable \(x_{j}\).

\section*{cf. example}

\section*{Example:}
\[
\min z=x_{1}+x_{2}+10 x_{3}
\]
\[
x_{2}+4 x_{3}=2
\]
\[
\begin{equation*}
-2 x_{1}+x_{2}-6 x_{3}=2 \tag{P}
\end{equation*}
\]
\[
x_{1}, x_{2}, x_{3} \geq 0
\]
\[
\min \quad v=y_{1}+y_{2}
\]
\(\left(P_{A}\right)\)
\[
\begin{array}{r}
x_{2}+4 x_{3}+y_{1}=2 \\
-2 x_{1}+x_{2}-6 x_{3}+y_{2}=2 \\
x_{1}, x_{2}, x_{3}, y_{1}, y_{2} \geq 0
\end{array}
\]

Put \(v=y_{1}+y_{2}\) in canonical form by substituting the expression of \(y_{1}\) and \(y_{2}\) in terms of \(x_{1}, x_{2}\) and \(x_{3}\).
\begin{tabular}{c|c|ccc|ccc|}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{\(x_{1}\)} & \(x_{2}\) & \(x_{3}\) & \(y_{1}\) & \(y_{2}\) \\
\cline { 2 - 7 } & -4 & 2 & -2 & 2 & 0 & 0 \\
\cline { 2 - 7 }\(y_{1}\) & -4 & 0 & 1 & 4 & 1 & 0 \\
\(y_{2}\) & 2 & -2 & 1 & -6 & 0 & 1 \\
\cline { 2 - 7 } & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{\(x\)} & \(x_{2}\) & \(x_{3}\) & \(y_{1}\) & \(y_{2}\) \\
\hline -v & -4 & 2 & -2 & 2 & 0 & 0 \\
\hline \(y_{1}\) & 2 & 0 & (1) & 4 & 1 & 0 \\
\hline \(y_{2}\) & 2 & -2 & 1 & -6 & 0 & 1 \\
\hline
\end{tabular}

\begin{tabular}{c|c|cccc|cc|}
\multicolumn{1}{c}{} & \multicolumn{4}{c}{\(x_{1}\)} & \(x_{2}\) & \(x_{3}\) & \(y_{1}\) \\
\multicolumn{1}{c}{\(y_{2}\)} \\
\cline { 2 - 7 }\(-v\) & 0 & 2 & 0 & 10 & 2 & 0 \\
\cline { 2 - 7 }\(x_{2}\) & 2 & 0 & 1 & 4 & 1 & 0 \\
\(y_{2}\) & 0 & -2 & 0 & -10 & -1 & 1 \\
\cline { 2 - 6 } & & & & & & & \(\checkmark\)
\end{tabular}
\[
\begin{aligned}
& \text { optimal value } v^{*}=0 \\
& \underline{x}^{*}=(0,2,0) \\
& \underline{x}^{*}=(0,0)
\end{aligned}
\]

By selecting as «pivot» the coefficient -2 of the row of \(y_{2}\), we obtain:

Equivalent optimal basis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(y_{1}\) & \(y_{2}\) \\
\hline -v & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline \(x_{2}\) & 2 & 0 & 1 & 4 & 1 & \\
\hline \(x_{1}\) & 0 & 1 & 0 & 5 & 1/2 & -1/2 \\
\hline
\end{tabular}

The column \({ }_{1}^{0}\) of \(I\) has been transferred in the "area" the original \(x_{j}\) variables.
\(\Rightarrow\) optimal basic feasible solution of \(\left(P_{A}\right)\)
\(\underline{x}=(0,2,0)\)
is a basic feasible solution of \((P)\).


By substituting:
\[
\left\{\begin{array}{l}
x_{2}=2-4 x_{3} \\
x_{1}=-5 x_{3}
\end{array} \quad \Rightarrow \quad z=2+x_{3}\right.
\]
\begin{tabular}{c|c|ccc|}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{\(x_{1}\)} & \(x_{2}\) & \multicolumn{1}{c}{\(x_{3}\)} \\
\cline { 2 - 5 } & -2 & 0 & 0 & 1 \\
\cline { 2 - 5 } & -2 & 0 & 1 & 4 \\
\(x_{2}\) & 2 & & \\
\(x_{1}\) & 0 & 1 & 0 & 5 \\
\cline { 2 - 5 } & & & &
\end{tabular}

\section*{Tableau corresponding to the initial} basic feasible solution of \((P)\).

Since the basic feasible solution found is (already) optimal, here no need for the second phase!

\subsection*{4.5.7 Polynomial-time algorithms for LP}
- Ellipsoid method (L. Khachiyan 1979)

Theoretically important.
- Interior point methods (N. Karmarkar 1984,...)


Narendra Karmarkar (1957-)
Very efficient variants (e.g. barrier methods) for some types of instances (e.g. sparse and large-scale).```

