4.6 Linear Programming duality

To any minimization (maximization) LP we can associate a closely
related maximization (minimization) LP based on same parameters.

Different spaces and objective functions but in general the
optimal objective function values coincide.

Example: The value of a maximum feasible flow 1s equal to the capacity
of a cut (separating the source s and the sink 7) of minimum capacity.
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Motivation: estimate of the optimal value

Given max z =4x; +x,+ 5x3 + 3x,
X;— x, — x;+3x, <1 (D
S5x;+ x, + 3x3+8x4S 55 (1)

—x] +2x, +3x; —5x,<3 (III)
=0 i=1,..,4

find an estimate of the optimal value z".

Any feasible solution is a lower bound.

Lower bounds: (0,0,1,0) — z">5
2,1,1,1/3) — z°> 15
(3,0,2,0) — z'=22

Even if we are lucky, we are not sure it 1s the optimal solution!
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Upper bounds:

* By multiplying 5x, + x, + 3x; +8x, < 55 (II) by 5/3, we obtain
an mequality that dominates the objective function:

4x, + x, + 5x; + 3x, < 25/3x, + 5/3x, + 5x; + 40/3x, <275/3

Y feasible solution
= z' < 275/3.

* By adding constraints (II) and (III), we obtain:
4x, +x, + 5x; + 3x, < 4x, + 3x, + 6x; + 3x, < 58

= z' <58 better upper bound.

Linear combinations with nonnegative multipliers of
inequality constraints yields valid inequalities




General strategy: Linearly combine the constraints with non
negative multiplicative factors (i-th constraint multiplied by . = 0).

first case: v;=0, ¥,=5/3, y;=0

second case: y;=0, y,=1, y;=1

In general any such linear combination of (I), (II), (III) reads
Vi(x;—x;,—x3 +3x,) + y,(5x; + x; + 3x; + 8x,)

+ y3(=x; + 2x, + 3x3—5x,) <y, + 55y, + 3y;
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which 1s equivalent to:

VT 5,=p3)x, (v, Ty, T 203) X, + (-y, + 3y, + 313) x5

(*)
+ By, 8y, = 5y3) x4, <y, + 55y, + 3y;

Observation: y. > 0 so that the inequality direction is unchanged.

To use the left hand side of (*) as upper bound on

z =4x;, +x, + 5x; + 3x,
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z =4x, +x, + 5x; + 3x,

we must have

C oyt S,y =

vt oyt 2y
< v+ 3y, 3y;
3y; + 8y, —5y;

vV IV IV
W DN — N

y.20, i=12 3.

~

In such a case, any feasible solution x satisfies
4x, +x, + 5x; + 3x, <y, + 55y, + 3y,

In particular: z'< y, + 55y, + 3y,
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Since we look for the best possible upper bound on z™

Original problem:

. max z =4x, +x, + 5x; + 3x,

min  y,+ 55y, + 3y, Y - = 43k, <1
Y1 +35y, — ;3 5%x;+ x, + 3x;+8x, <55 (I

(D) Vi + Vo + 2y3 x; +2x, +3x; —5x, <3 (Il)

=0 i=1..4
Vi +3y, + 3y;

3y,  +8y, — Sy;
y; =0 i=1,23

Vv v v
W N —

Definition: The problem (D) is the dual problem, while the
original problem is the primal problem.
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In matrix form:

max z =
Primal (P) Ax <
X =

min w=
Dual (D) Aly >
y =

|

I© o~ I

1S~
1<

I 1O

or 4=’
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Dual problem

min

(D)

max z

(P)

|
oY

= |E§‘ %

VA
1O |1~

Dual of an LP in standard form ?

min z = ¢!,
A

IV

1O 1S

1= 1= 1%
|

S

N
R SR N
\YAR\Y;

1 IO
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Standard form:

min

(P)

N
|
@

V-l

| =< |E?
© o~ 1%

with 4 an mxn matrix
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(D)

max

E. Amaldi —

bTy -min  -b(y? - y!)

Aly < ¢ K A0 -1 =

y€Rm V'>0,°>0
yi=y -y

unrestricted in sign!
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Property: The dual of the dual problem coincides with the

primal problem.
max z=clx min w = bly
x>0 y=90

Observation: it doesn't matter which one is a maximum or minimum problem.
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General transformation rules

Primal (minimizatior%)

Dual (maximization)

m constraints

n variables
coefficients obj. fct
right hand side
A

equality constraints
unrestriced variable
inequality constraints > (<)

variables >0 (<0)
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m variables

n constraints
right hand side
coefficients obj. fct
AT

unrestriced variables

equality constraints
variables >0 (<0)

inequality constraints < (=)
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Example:

max Xx; + X,

(P) X;— Xy <2
3x;+2x, =12
X, x,=20
max x; +x, min 2y, - 12y,
X;- X, <2 y;-3y,>21
-3x;-2x, < -12 — -y, -2y, = 1
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Example: using the above rules

max x; +x, min 2y, + 12y,
(P) Xp— X, =2 Yt 3y, =1
3x, 4+ 2x,> 12 __’d 1 y, + 2y, >1
X, x, >0 e y,20,y,<0

min 2y, - 12y,
Zek - 25, =1
¥,20,y,20
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Exercise:

(P)

min 10x; + 20x, + 30x;
2x; —x, > 1
X, tx; <2

x; 20, x,<0, x; unrestricted

Dual?
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Weak duality theorem

For each feasible solution x € X of (P) and each feasible
solution y € ¥ of (D) we have

by < c'x.
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For every pair x € Xandy € Y, we have Ax > b,

|1

Ay < ¢, y> 0 which imply that

by < x'A"y < x'c =c'x
IA —

XTAT
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Consequence:

If x 1s a feasible solution of (P) (xe X ), y 1s a feasible solution of
(D) (x€7),

and the values of the respective objective functions coincide

cx = bly,
then

x 1s optimal for (P) and y 1s optimal for (D).

Optimal solutions are denoted by x" and y°
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Strong duality theorem

IfX={x:Ax>=b,x =0} # @ and min{c/x : x € X} is finite, there
exist x* € Xand y" € Y such that ¢/x" = bly",

AN

min{ c’x:x € X} =max{bly:ye Y}

¢ z=clx x €& X feasible for (P)

y € Y feasible for (D)
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@ Derive an optimal solution of (D) from one of (P)

Given min c’x max y'b
(P) Ax=b (D) yA=sc
x=0 y € R”

and x* 1s an optimal feasible solution of (P)

o= | X5 i J Xp T BD
B XN Xy—2Y

provided (after a finite # of iterations) by the Simplex algorithm
with Bland's rule.
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Consider yl=cl, B!

* Verify that y 1is a feasible solution of (D):

cly=cly—(clgB)N =cly—yIN = 0'

S N

. . . ko .
reduced costs of the nonbasic variables since x” 1s optimal
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clp=clp—(c"yBNB=clp—y'B=0"= y'B<cly
uliad
\\ Vi

reduced costs of the basic variables

* According to weak duality, y 1s an optimal solution of (D):

vib = (QTB B1)b = QTB (B-1b) = QTBJ_C*B = cTx”
Hence y=y"

E. Amaldi — Foundations of Operations Research — Politecnico di Milano

23



Corollary

For any pair of primal-dual problems (P) and (D), only four cases
can arise:

D} 3 optimal | unbounded | infeasible

P solution LP LP
1 optimal 1 1) 1)
solution ><

unbounded 1) 2)

LP

Infeasible 1)
LP
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Strong duality theorem = 1)
Weak duality theorem = 2) and 3)

4) can arise:

min  -4x;, — 2x, max 2y, +y,
Xt X, =2 V,ty, =4
(P) X;— x,=>1 (D) YV, =V, <-2
Xp, X, 20 Yp Y220

empty feasible regions
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Economic interpretation

The primal and dual problems correspond to two complementary
point of views on the same “market”.

Diet problem:
n aliments j=1,..., n
m  nutrients i=1,..., m (vitamines,...)

a..  quantity of i-th nutrient in one unit of j-th aliment
b.  requirement of i-th nutrient

c;  cost of one unit of j-th aliment
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(P) Zaljx. > b, Vi=1,...,m

max ib,-y,-
i=1

(D) Zal.jyl. <c¢, Vj=1,.,n
i=1
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Interpretation of the dual problem:

A company that produces pills of the m nutrients needs to decide the
nutrient unit prices y; so as to_maximize income.

 If the costumer buys nutrient pills, he will buy b, units for each i,
| <i<m.

* The price of the nutrient pills must be competitive:

Z%J’i <c, Vj=l,.,n

X

cost of the pills that are equivalent to 1 unit of j-th aliment

E. Amaldi — Foundations of Operations Research — Politecnico di Milano 28



If both linear programs (P) and (D) admit a feasible solution, the
strong duality theorem 1mplies that

%k %k

z =W

An “equilibrium” exists (two alternatives with the same cost).

Observation: Strong connection with Game theory (zero-sum games).
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Optimality conditions

GiVen min z = QT)_C max W = QZ:X
(D) T T

Y {A)_c > b y {XA <c

x=0 ry=0

two feasible solutions x* € X and y* € Y are optimal

"Th = Ty’

\\

If X. and y. are unknown, it is a single equation in n+m unknowns!
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Since  y'Th < y'TAx™ < cTx", we have

%r_/
AV\ . IA
X' T

X*Té _ X*TA)_C* and X*TA)_C* _ QT.X*

and therefore

y'(x"-b)=0 and (c"-y7"4)x" =0

Vi V| Vi 0
o7 0 or =

= m+n equations 1n n+m unknowns

necessary and sufficient optimality conditions!
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Complementary slackness conditions

x € X and y" € Y are optimal solutions of, respectively, (P) and
(D) 1f and only 1f

slack s; of i-th constraint of (P)

i-th row of 4
\)}(QT,-?_C* -b)=0 Vi=1,...,. m

(ch—y74)x";=0 Vji=1,.., n

~

slack s?; of j-th constraint of (D)

j-th column of 4

At optimality, the product of each variable with the corresponding slack
variable of the constraint of the relative dual 1s = 0.
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Economic interpretation for the diet problem

n
e Yax,>b = y =0
=1

If the optimal diet includes an excess of i-th nutrient, the costumer
is not willing to pay y*;> 0.

* n *
J=1

If the company selects a price y*; > 0, the costumer must not have
an excess of i-th nutrient.
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3

% " 1t 1S not convenient for the
° .Ziy i <c; = x;=0 costumer to buy aliment j
l:

price of the pills equivalent to the nutrients contained in one unit
of j-th aliment is lower than the price of the aliment.

* m
oxj>0 = %yiayzcj
1=

If costumer includes the j-th aliment in optimal diet, the company
must have selected competitive prices y”; (price of the nutrients in
pills contained in a unit of j-th aliment is not lower than c;).
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Example:

min  13x; + 10x, + 6x; max  8y; + 3y,
s.t. 5x, tx,+3x;=8 s.t. 5y, + 3y, <13
(P) 3x; + x, =3 (D) y; + y, <10
X, Xy, X320 3y, <6

Verify that the feasible x* = (1, 0, 1) is an optimal, non degenerate
solution of (P).

Suppose it is true and derives, via the complementary slackness
conditions, the corresponding optimal solution of (D).
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Since (P) 1s 1n standard form, the conditions
i (@hx"-b)=0

are automatically satisfied Vi, 1<i <2.
Condition (¢’; —y™4;) x”; = 0 is satisfied for j = 2 because x",= 0.

Since x*; > 0 and x*; > 0, we obtain the conditions:

S5y, + 3y, =13

3y, =6
and hence the optimal solution y*, =2 and y*, = 1 of (D)
with bTy" =19 =cTx"
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