4.6 Linear Programming duality

To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP based on same parameters.

Different spaces and objective functions but in general the optimal objective function values coincide.

Example: The value of a maximum feasible flow is equal to the capacity of a cut (separating the source s and the sink t) of minimum capacity.

Motivation: estimate of the optimal value

Given $\quad \max \quad z=4 x_{1}+x_{2}+5 x_{3}+3 x_{4}$

$$
\begin{array}{rll}
x_{1}-x_{2}-x_{3}+3 x_{4} \leq 1 & \text { (I) } \\
5 x_{1}+x_{2}+3 x_{3}+8 x_{4} \leq 55 & \text { (II) } \\
-x_{1}+2 x_{2}+3 x_{3}-5 x_{4} \leq 3 & \text { (III) } \\
x_{i} \geq 0 & i=1, \ldots, 4
\end{array}
$$

find an estimate of the optimal value z^{*}.
Any feasible solution is a lower bound.
Lower bounds: $(0,0,1,0) \quad \rightarrow z^{*} \geq 5$
$(2,1,1,1 / 3) \rightarrow z^{*} \geq 15$

$$
(3,0,2,0) \quad \rightarrow z^{*} \geq 22
$$

Even if we are lucky, we are not sure it is the optimal solution!

Upper bounds:

- By multiplying $5 x_{1}+x_{2}+3 x_{3}+8 x_{4} \leq 55$ (II) by $5 / 3$, we obtain an inequality that dominates the objective function:

$$
\begin{gathered}
4 x_{1}+x_{2}+5 x_{3}+3 x_{4} \leq 25 / 3 x_{1}+5 / 3 x_{2}+5 x_{3}+40 / 3 x_{4} \leq 275 / 3 \\
\Rightarrow z^{*} \leq 275 / 3
\end{gathered} \quad \forall \text { feasible solution } \quad . \quad .
$$

- By adding constraints (II) and (III), we obtain:

$$
\begin{gathered}
4 x_{1}+x_{2}+5 x_{3}+3 x_{4} \leq 4 x_{1}+3 x_{2}+6 x_{3}+3 x_{4} \leq 58 \\
\Rightarrow z^{*} \leq 58 \quad \text { better upper bound }
\end{gathered}
$$

Linear combinations with nonnegative multipliers of inequality constraints yields valid inequalities

General strategy: Linearly combine the constraints with non negative multiplicative factors (i-th constraint multiplied by $y_{i} \geq 0$).

$$
\begin{array}{ll}
\text { first case: } & y_{1}=0, y_{2}=5 / 3, y_{3}=0 \\
\text { second case: } & y_{1}=0, y_{2}=1, y_{3}=1
\end{array}
$$

In general any such linear combination of (I), (II), (III) reads

$$
\begin{aligned}
y_{l}\left(x_{1}-x_{2}-x_{3}+3 x_{4}\right) & +y_{2}\left(5 x_{1}+x_{2}+3 x_{3}+8 x_{4}\right) \\
& +y_{3}\left(-x_{1}+2 x_{2}+3 x_{3}-5 x_{4}\right) \leq y_{1}+55 y_{2}+3 y_{3}
\end{aligned}
$$

which is equivalent to:

$$
\begin{align*}
\left(y_{1}+5 y_{2}-y_{3}\right) x_{1} & +\left(-y_{1}+y_{2}+2 y_{3}\right) x_{2}+\left(-y_{1}+3 y_{2}+3 y_{3}\right) x_{3} \\
& +\left(3 y_{1}+8 y_{2}-5 y_{3}\right) x_{4} \leq y_{1}+55 y_{2}+3 y_{3} \tag{*}
\end{align*}
$$

Observation: $y_{i} \geq 0$ so that the inequality direction is unchanged.

To use the left hand side of $\left({ }^{*}\right)$ as upper bound on

$$
z=4 x_{1}+x_{2}+5 \mathrm{x}_{3}+3 x_{4}
$$

$$
z=4 x_{1}+x_{2}+5 x_{3}+3 x_{4}
$$

we must have

$$
\left\{\begin{array}{c}
y_{1}+5 y_{2}-y_{3} \geq 4 \\
-y_{1}+y_{2}+2 y_{3} \geq 1 \\
-y_{1}+3 y_{2}+3 y_{3} \geq 5 \\
3 y_{1}+8 y_{2}-5 y_{3} \geq 3
\end{array} \quad y_{i} \geq 0, \quad i=1,2,3\right.
$$

In such a case, any feasible solution \underline{x} satisfies

$$
4 x_{1}+x_{2}+5 x_{3}+3 x_{4} \leq y_{1}+55 y_{2}+3 y_{3}
$$

In particular: $z^{*} \leq y_{1}+55 y_{2}+3 y_{3}$

Since we look for the best possible upper bound on z^{*} :

$$
\begin{aligned}
\min & y_{1}+55 y_{2}+3 y_{3} \\
& y_{1}+5 y_{2}-y_{3} \geq 4 \\
\text { (D) } & -y_{1}+y_{2}+2 y_{3} \geq 1 \\
& -y_{1}+3 y_{2}+3 y_{3} \geq 5 \\
& 3 y_{1}+8 y_{2}-5 y_{3} \geq 3
\end{aligned}
$$

Original problem:

$$
\max z=4 x_{1}+x_{2}+5 x_{3}+3 x_{4}
$$

$$
\begin{array}{r}
x_{1}-x_{2}-x_{3}+3 x_{4} \leq 1 \\
5 x_{1}+x_{2}+3 x_{3}+8 x_{4} \leq 55
\end{array}
$$

$$
5 x_{1}+x_{2}+3 x_{3}+8 x_{4} \leq 55
$$

$$
-x_{1}+2 x_{2}+3 x_{3}-5 x_{4} \leq 3
$$

$$
x_{i} \geq 0 \quad i=1, \ldots, 4
$$

$$
\mathrm{y}_{i} \geq 0 \quad i=1,2,3
$$

Definition: The problem (D) is the dual problem, while the original problem is the primal problem.

In matrix form:

Primal		$z=\underline{c}^{T} \underline{x}$
	(P)	$A \underline{x} \leq \underline{b}$
		$\underline{x} \geq \underline{0}$

Dual (D) | $\min \quad w$ | $=\underline{b}^{T} \underline{y}$ |
| ---: | :--- |
| | $A^{T} \underline{y}$ |$\quad \underline{c}$ or $\underline{y}^{T} A \geq \underline{c}^{T}$

Dual problem

max
$z=\underline{c}^{T} \underline{x}$
\min
$w=\underline{b}^{T} \underline{v}$
(P)

$$
\begin{aligned}
A \underline{x} & \leq \underline{b} \\
\underline{x} & \geq \underline{0}
\end{aligned}
$$

(D)
$\begin{aligned} A^{T} \underline{y} & \geq \underline{c} \\ \underline{y} & \geq \underline{0}\end{aligned}$

Dual of an LP in standard form?

$$
\begin{aligned}
& \min z=\underline{c}^{T} \underline{x} \\
& A \underline{x}=\underline{b} \\
& \underline{x} \geq \underline{0}
\end{aligned}
$$

Standard form:

$$
\left.\begin{array}{rllll}
\min & z & =\underline{c}^{T} \underline{x} & & -\max \\
(P) & \underline{c}^{T} \underline{x} \\
& A \underline{x} & =\underline{b} & \equiv & \binom{A}{-A} \underline{x} \leq(\underline{b} \\
& \underline{x} \geq \underline{b}
\end{array}\right)
$$

with A an $m \times n$ matrix

$$
\begin{aligned}
& -\min \quad\left(\underline{b}^{T}-\underline{b}^{T}\right)\left(\frac{y^{I}}{y^{2}}\right) \\
& \left(A^{T}-A^{T}\right)\left(\frac{y^{l}}{y^{2}}\right) \geq-\underline{c} \\
& \underline{\underline{L}}^{l} \geq \underline{0}, \underline{\nu}^{2} \geq \underline{0} \\
& \text { III } \\
& \max \quad w=\underline{b}^{T} \underline{y} \\
& -\min \quad-\underline{b}^{T}\left(\underline{y}^{2}-\underline{y}^{l}\right) \\
& \begin{array}{ll}
A^{T} \underline{y} \leq \underline{c} \\
\underline{y} \in \mathrm{R}^{\mathrm{m}}
\end{array} \quad\left\{\begin{array}{l}
-A^{T}\left(y^{2}-\underline{y}^{l}\right) \geq-\underline{c} \\
\underline{y}^{l} \geq \underline{0}, \underline{y}^{2} \geq \underline{0}
\end{array}\right. \\
& \nu:=y^{2}-\nu^{1} \\
& \text { unrestricted in sign! }
\end{aligned}
$$

Property: The dual of the dual problem coincides with the primal problem.

$$
\begin{array}{lrrr}
\max & z=\underline{c}^{T} \underline{x} & \min & w=\underline{b}^{T} \underline{y} \\
& A \underline{x} \leq \underline{b} & (D) & A^{T} \underline{y} \geq \underline{c} \\
(P) & \underline{x} \geq \underline{0} & \underline{0} & \cdots
\end{array}
$$

Observation: it doesn't matter which one is a maximum or minimum problem.

General transformation rules

Primal (minimization)	
m constraints	
n variables	
coefficients obj. fct	
right hand side	
A	Dual (maximization) right hand side equality constraints coefficients obj. fct unrestriced variables
A^{T} inequality constraints $\geq(\leq)$ variables $\geq 0(\leq 0)$ E. Amaldi - Foundations of Operations Research - Politecnico di Milano inequality constraints $\leq(\geq)$	

Example:

$$
\text { (P) } \quad \begin{aligned}
& \max \quad x_{1}+x_{2} \\
& x_{1}-x_{2} \leq 2 \\
& 3 x_{1}+2 x_{2} \geq 12 \\
& \\
& \\
& \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

$$
\begin{array}{cllc}
\max & x_{1}+x_{2} \\
x_{1}-x_{2} \leq 2 \\
-3 x_{1}-2 x_{2} \leq-12 \\
x_{1}, x_{2} \geq 0 & & & \\
& & \text { din } & 2 y_{1}-12 y_{2} \\
y_{1}-3 y_{2} \geq 1 \\
-y_{1}-2 y_{2} \geq 1 \\
y_{1}, y_{2} \geq 0
\end{array}
$$

Example: using the above rules

$$
\begin{array}{rlll}
\max \begin{array}{l}
x_{1}+x_{2} \\
x_{1}-x_{2} \leq 2 \\
3 x_{1}+2 x_{2} \geq 12 \\
x_{1}, x_{2} \geq 0
\end{array} & \boxed{\text { dual }} & & \text { min }
\end{array} \begin{aligned}
& 2 y_{1}+12 y_{2} \\
& y_{1}+3 y_{2} \geq 1 \\
& \\
&
\end{aligned}
$$

Exercise:

$$
\begin{aligned}
& \min 10 x_{1}+20 x_{2}+30 x_{3} \\
& \begin{aligned}
2 x_{1}-x_{2} & \geq 1 \\
x_{2}+x_{3} & \leq 2
\end{aligned} \\
& \begin{aligned}
2 x_{1}-x_{2} & \geq 1 \\
x_{2}+x_{3} & \leq 2
\end{aligned} \\
& \text { (P) } \\
& x_{1} \quad-x_{3}=3 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { unrestricted }
\end{aligned}
$$

Dual?

Weak duality theorem

\min

$$
\begin{align*}
& z=\underline{c}^{T} \underline{x} \\
& A \underline{x} \tag{D}
\end{align*}
$$

$$
\max
$$

$$
w=\underline{b}^{T} \underline{y}
$$

$$
\begin{aligned}
A^{T} \underline{y} & \leq \underline{c} \\
\underline{y} & \geq \underline{0}
\end{aligned}
$$

$$
\begin{aligned}
& X:=\{\underline{x}: A \underline{x} \geq \underline{b}, \underline{x} \geq \underline{0}\} \neq \varnothing \text { and } \\
& Y:=\left\{\underline{y}: A^{T} \underline{y} \leq \underline{c}, \underline{y} \geq \underline{0}\right\} \neq \varnothing,
\end{aligned}
$$

For each feasible solution $\underline{\underline{x}} \in X$ of (P) and each feasible solution $\overline{\mathcal{L}} \in Y$ of (D) we have

$$
\begin{aligned}
& \qquad \underline{b}^{T} \overline{\bar{y}} \leq \underline{c}^{T} \underline{\bar{x}} \\
& \text { E. Amaldi }- \text { Foundations of Operations Research }- \text { Politecnico di Milano }
\end{aligned}
$$

Proof

For every pair $\underline{\underline{x}} \in X$ and $\overline{\underline{y}} \in Y$, we have $A \underline{\bar{x}} \geq \underline{b}, \underline{\bar{x}} \geq \underline{0}$ and $A^{T} \overline{\underline{y}} \leq \mathcal{c}, \overline{\underline{y}} \geq \underline{0}$ which imply that

$$
\begin{gathered}
\underline{b}^{T} \overline{\bar{y}}
\end{gathered} \leq \underline{\underline{x}}_{\underline{\mid}}^{\underline{\bar{x}}^{T}} \underbrace{A^{T} \overline{\underline{y}}} \leq \underline{\underline{x}}^{T} \underline{c}=\underline{c}^{T} \underline{\bar{x}}
$$

Consequence:

If $\underline{\underline{x}}$ is a feasible solution of $(P)(\underline{\bar{x}} \in X), \overline{\underline{y}}$ is a feasible solution of (D) $(\bar{x} \in Y)$, and the values of the respective objective functions coincide

$$
\underline{c}^{T} \underline{\underline{x}}=\underline{b}^{T} \underline{\underline{y}},
$$

then

$$
\underline{\bar{x}} \text { is optimal for }(P) \text { and } \overline{\underline{y}} \text { is optimal for }(D) .
$$

$$
\text { Optimal solutions are denoted by } \underline{x}^{*} \text { and } \underline{\underline{x}}^{*}
$$

Strong duality theorem

If $X=\{\underline{x}: A \underline{x} \geq \underline{b}, \underline{x} \geq \underline{0}\} \neq \varnothing$ and $\min \left\{\underline{c}^{T} \underline{x}: \underline{x} \in X\right\}$ is finite, there exist $\underline{x}^{*} \in X$ and $\underline{\underline{x}}^{*} \in Y$ such that $\underline{c}^{T} \underline{x}^{*}=\underline{b}^{T} \underline{\underline{y}}^{*}$.

$$
\min \left\{\underline{c}^{T} \underline{x}: \underline{x} \in X\right\}=\max \left\{\underline{b}^{T} \underline{\underline{x}}: \underline{y} \in Y\right\}
$$

Proof Derive an optimal solution of (D) from one of (P)

Given

$$
\begin{aligned}
& \min \underline{c}^{T} \underline{x} \\
(P) \quad A \underline{x} & =\underline{b} \\
\underline{x} & \geq \underline{0}
\end{aligned}
$$

$\max \underline{y}^{T} \underline{b}$
(D) $\quad \underline{y}^{T} A \leq \underline{c}^{T}$ $\underline{v} \in \mathrm{R}^{m}$
and \underline{x}^{*} is an optimal feasible solution of (P)

$$
\underline{x}^{*}=\binom{\underline{x}^{*}}{\underline{x}_{N}^{*}} \text { with } \quad\left\{\begin{array}{l}
\underline{x}_{B}^{*}=B^{-1} \underline{b} \\
\underline{x}_{N}^{*}=\underline{0}
\end{array}\right.
$$

provided (after a finite \# of iterations) by the Simplex algorithm with Bland's rule.

Consider
 $$
\overline{\underline{x}}^{T}:=\underline{c}^{T}{ }_{B} B^{-1}
$$

- Verify that $\overline{\underline{y}}$ is a feasible solution of (D) :
reduced costs of the nonbasic variables since \underline{x}^{*} is optimal

$$
\Rightarrow \quad \overline{\underline{x}}^{T} N \leq \underline{c}^{T}{ }_{N}
$$

$$
\begin{aligned}
& \underline{\bar{c}}^{T}{ }_{B}=\underline{c}^{T}{ }_{B}-(\underline{c}_{B}^{T} \underbrace{\left.B^{-1}\right) B}_{I}=\underline{c}_{B}^{T}-\bar{y}^{T} B=\underline{0}^{T} \Rightarrow \overline{\underline{y}}^{T} B \leq \underline{c}_{B}^{T} \\
& \text { reduced costs of the basic variables }
\end{aligned}
$$

- According to weak duality, $\overline{\underline{L}}$ is an optimal solution of (D) :

$$
\overline{\underline{y}}^{T} \underline{b}=\left(\underline{c}^{T}{ }_{B} B^{-1}\right) \underline{b}=\underline{c}^{T}{ }_{B}\left(B^{-1} \underline{b}\right)=\underline{c}^{T}{ }_{B} \underline{x}^{*}{ }_{B}=\underline{c}^{T} \underline{x}^{*}
$$

Hence $\overline{\underline{y}}=\underline{y}^{*}$

Corollary

For any pair of primal-dual problems (P) and (D), only four cases can arise:

D	optimal P	unbounded solution	LP infeasible LP
\exists optimal solution	$1)$	$1)$	$1)$
unbounded LP	$1)$	$2)$	$2)$
Infeasible LP	$1)$		

Strong duality theorem $\Rightarrow 1$)
Weak duality theorem $\Rightarrow 2$) and 3)
4) can arise:

Economic interpretation

The primal and dual problems correspond to two complementary point of views on the same "market".

Diet problem:

$n \quad$ aliments $\quad j=1, \ldots, n$
m nutrients $i=1, \ldots, m$ (vitamines, \ldots)
$a_{i j} \quad$ quantity of i-th nutrient in one unit of j-th aliment
$b_{i} \quad$ requirement of i-th nutrient
$c_{j} \quad$ cost of one unit of j-th aliment

$$
\begin{array}{rlr}
\min & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { (P) } & \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} & \forall i=1, \ldots, m \\
& x_{j} \geq 0 & \forall j=1, \ldots, n \\
& \\
\text { max } \quad \sum_{i=1}^{m} b_{i} y_{i} & \\
\text { (D) } & \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j} & \forall j=1, \ldots, n \\
& y_{i} \geq 0 & \forall i=1, \ldots, m
\end{array}
$$

Interpretation of the dual problem:

A company that produces pills of the m nutrients needs to decide the nutrient unit prices y_{i} so as to maximize income.

- If the costumer buys nutrient pills, he will buy b_{i} units for each i, $1 \leq i \leq m$.
- The price of the nutrient pills must be competitive:

$$
\sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j} \quad \forall j=1, \ldots, n
$$

cost of the pills that are equivalent to 1 unit of j-th aliment

If both linear programs (P) and (D) admit a feasible solution, the strong duality theorem implies that

$$
z^{*}=w^{*}
$$

An "equilibrium" exists (two alternatives with the same cost).

Observation: Strong connection with Game theory (zero-sum games).

Optimality conditions

Given min $z=\underline{c}^{T} \underline{x}$

$$
\max \quad w=\underline{b}^{T} \underline{y}
$$

$$
\text { (P) } \quad X\left\{\begin{aligned}
A \underline{x} & \geq \underline{b} \\
\underline{x} & \geq \underline{0}
\end{aligned}\right.
$$

(D) $\quad Y\left\{\begin{array}{r}\underline{\nu}^{T} A \leq \underline{c}^{T} \\ \underline{y} \geq \underline{0}\end{array}\right.$
two feasible solutions $\underline{x}^{*} \in X$ and $\underline{\underline{x}}^{*} \in Y$ are optimal

$$
\Leftrightarrow \underline{\underline{x}}^{*} \underline{\underline{b}}=\underline{c}^{T} \underline{x}^{*}
$$

If x_{j} and y_{i} are unknown, it is a single equation in $n+m$ unknowns!

Since

$$
\begin{aligned}
& \underline{y}^{*} \underline{b}=\underline{y}^{* T} A \underline{x}^{*} \quad \text { and } \quad \underline{x}^{*} T \underline{x}^{*}=\underline{c}^{T} \underline{x}^{*}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \underline{x}^{* T}(\underbrace{\left(\underline{x}^{*}-\underline{b}\right)}_{\mathrm{VI}}=0 \quad \text { and } \quad(\underbrace{\left(\underline{c}^{T}-\underline{y}^{*} T\right.}_{\mathrm{V} \mid}) \underline{\mathrm{V} \mid} \underline{x}^{*}=0 \\
& \underline{\mathrm{O}}^{T} \quad \underline{0} \\
& \quad \Rightarrow m+n \text { equations in } n+m \text { unknowns }
\end{aligned}
$$

necessary and sufficient optimality conditions!

Complementary slackness conditions

$\underline{x}^{*} \in X$ and $\underline{\underline{x}}^{*} \in Y$ are optimal solutions of, respectively, (P) and (D) if and only if
i-th row of A slack s_{i} of i-th constraint of (P)

$$
\begin{array}{ll}
y_{i}^{*}\left(\underline{\underline{T}}_{i}^{T} \underline{x}^{*}-b_{i}\right)=0 & \forall i=1, \ldots, m \\
(\underbrace{\left.c_{j}^{T}-\underline{y}^{*} A_{j}\right) x_{j}^{*}=0} & \forall j=1, \ldots, n
\end{array}
$$

slack $s^{D}{ }_{i}$ of j-th constraint of $(D) \quad j$-th column of A

At optimality, the product of each variable with the corresponding slack variable of the constraint of the relative dual is $=0$.

Economic interpretation for the diet problem

- $\sum_{j=1}^{n} a_{i j} x_{j}^{*}>b_{i} \Rightarrow y_{i}^{*}=0$

If the optimal diet includes an excess of i-th nutrient, the costumer is not willing to pay $y_{i}^{*}>0$.

- $y_{i}^{*}>0 \Rightarrow \sum_{j=1}^{n} a_{i j} x_{j}^{*}=b_{i}$

If the company selects a price $y_{i}^{*}>0$, the costumer must not have an excess of i-th nutrient.

- $\sum_{i=1}^{m} y_{i}^{*} a_{i j}<c_{j} \Rightarrow x_{j}^{*}=0 \longrightarrow \begin{aligned} & \text { it is not convenient for the } \\ & \text { costumer to buy aliment } j\end{aligned}$
price of the pills equivalent to the nutrients contained in one unit of j-th aliment is lower than the price of the aliment.
- $x_{j}^{*}>0 \Rightarrow \sum_{i=1}^{m} y_{i}^{*} a_{i j}=c_{j}$

If costumer includes the j-th aliment in optimal diet, the company must have selected competitive prices y_{i}^{*} (price of the nutrients in pills contained in a unit of j-th aliment is not lower than c_{j}).

Example:

$$
\begin{array}{cccll}
\min & 13 x_{1}+10 x_{2}+6 x_{3} & & \max & 8 y_{1}+3 y_{2} \\
\text { s.t. } & 5 x_{1}+x_{2}+3 x_{3}=8 & & \text { s.t. } & 5 y_{1}+3 y_{2} \leq 13 \\
& 3 x_{1}+x_{2}=3 & \text { (D) } & y_{1}+y_{2} \leq 10 \\
& x_{1}, x_{2}, x_{3} \geq 0 & & & 3 y_{1}
\end{array}
$$

Verify that the feasible $\underline{x}^{*}=(1,0,1)$ is an optimal, non degenerate solution of (P).

Suppose it is true and derives, via the complementary slackness conditions, the corresponding optimal solution of (D).

Since (P) is in standard form, the conditions

$$
y_{i}^{*}\left(\underline{a}^{T}{ }_{i} \underline{x}^{*}-b_{i}\right)=0
$$

are automatically satisfied $\forall i, 1 \leq i \leq 2$.

Condition $\left(c^{T}{ }_{j}-\underline{\varphi}^{* T} A_{j}\right) x_{j}^{*}=0$ is satisfied for $j=2$ because $x_{2}^{*}=0$.

Since $x^{*}{ }_{1}>0$ and $x_{3}{ }_{3}>0$, we obtain the conditions:

$$
\begin{aligned}
& 5 y_{1}+3 y_{2}=13 \\
& 3 y_{1}=6
\end{aligned}
$$

and hence the optimal solution $y^{*}{ }_{1}=2$ and $y^{*}{ }_{2}=1$ of (D)
with $\underline{b}^{T} \underline{x}^{*}=19=c^{T} \underline{x}^{*}$.

