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5.3  Cutting plane methods and Gomory fractional cuts

Assumption: aij, cj and bi integer.

min cTx
s.t.       Ax ≥ b

x ≥ 0 integer
(ILP)

feasible region  X

Observation: The feasible region of an ILP can be described by 
different sets of constraints that may be weaker/tighter.

infinitely many formulations!
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Equivalent and ideal formulations

All formulations (with integrality constraints) are equivalent but the optimal 
solutions of the linear relaxations (x*

LP) can differ substantially.

 formulations 
x*

LP

Since all vertices have all integer coordinates, for any c we have z*
LP = z*

ILP   
and LP optimum is also ILP optimum !

-c x*
LP

-c

Definition: The ideal formulation is that describing the convex hull 
conv(X) of the feasible region X, where conv(X) is the smallest convex 
subset containing  X.
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Theorem: For any feasible region X of an ILP, there exists an ideal
formulation (a description of conv(X ) involving a finite number of
linear constraints) but the number of constraints can be very large
(exponential) with respect to the size of the original formulation.

In theory, the solution of any ILP can be reduced to that of a single LP!

However, the ideal formulation is often either very large and/or very
difficult to determine.

bounded or unbounded
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Idea: Given an initial formulation, iteratively add cutting planes as long 
as the linear relaxation does not provide an optimal integer solution. 

5.3.1 Cutting plane methods

A full description of conv(X) is not required, we just need a good
description in the neighborhood of the optimal solution.

Definition:  A cutting plane is an inequality aTx ≤ b that is not satisfied 
by x*

LP but is satisfied by all the feasible solutions of the ILP.
x*

LP

-c

x*
LP

etc...
-c
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Let x*LP be an optimal solution of the linear relaxation of the current 
formulation min{cTx : Ax = b, x ≥ 0} and x*B[r] be a fractional basic variable. 

5.3.2. Gomory fractional cuts

Definition: Gomory cut w.r.t. the fractional basic variable           :

∑ (arj - arj ) xj    (br - br )
j : xj N

rBx ][

Ralph Gomory 1929-
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The corresponding row of the optimal tableau:
fractional

(*)
j : xj N

rBx ][

xj non basic

∑ arj xj  = br
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• It is violated by the optimal fractional solution x*
LP of the linear 

relaxation:

Obvious since (br – br ) > 0 and  xj = 0 j  s.t. xj non basic.

Let us verify that the inequality

is a cutting plane with respect to x*
LP.

∑ (arj - arj ) xj    (br - br )
j : xj N 
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By substracting (**) from (*), for each integer feasible solution 
we have:

• It is satified by all integer feasible solution:

For each feasible solution of the linear relaxation, we have

xB[r] + ∑ arj xj ≤ xB[r] + ∑ arj  xj = br

and, in particular, for each integer feasible solution

xB[r] + ∑ arj xj ≤ br (**)

j  N

j  N

j  N
xj  0

∑ (arj - arj ) xj    (br - br ).
j  N

xj  integer



8

and the “fractional” form

xB[r] + ∑ arj xj ≤ br
j  N

∑ (arj - arj ) xj    (br - br )
j  N

The “integer” form

of the cutting plane are obviously equivalent.
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max z = 8x1 + 5x2
x1 + x2 ≤ 6
9x1 + 5x2 ≤ 45

x1, x2 ≥ 0 integer

Optimal tableau: x1 x2 s1 s2

-z -41.25 0 0 -1.25 -0.75
x1 3.75 1 0 -1.25 0.25
x2 2.25 0 1 2.25 -0.25

slack 
variables

Example:

3.75 
2.25with the fractional optimal basic solution x*

B =
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Select a row of the optimal tableau (a constraint) whose basic variable 
has a fractional value:

x1 – 1.25 s1 + 0.25 s2 = 3.75    

Note: The integer and fractional parts of a real number a are

a = a + f       with 0 ≤ f < 1

thus we have   -1.25 = -2 + 0.75   and  0.25 = 0 + 0.25.

Generate the corresponding  Gomory cut:   0.75 s1 + 0.25 s2  0.75  
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Introduce the slack variable s3  0 and add this cutting plane to the
tableau:

x1 x2 s1 s2 s3

-z -41.25 0 0 -1.25 -0.75 0
x1 3.75 1 0 -1.25 0.25 0
x2 2.25 0 1 2.25 -0.25 0
s3 -0.75 0 0 -0.75 -0.25 1

To efficiently reoptimize, we can apply a single iteration of the Dual 
simplex algorithm.

⇐ -0.75s1 – 0.25s2 ≤ -0.75

The new constraint “cuts” the optimal fractional solution  x*
B =

of the linear relaxation of the ILP.
3.75 
2.25
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x1 x2 S1 s2 s3

-z -40 0 0 0 -0.33 -1.67
x1 5 1 0 0 0.67 -1.67
x2 0 0 1 0 -1 3
s1 1 0 0 1 0.33 -1.33

Optimal tableau:
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Since the optimal solution x*=[5, 0, 1,0, 0]T (with z* = 40) of the linear
relaxation of the new formulation is integer, x* is also optimal for the
original ILP and we do not need to generate other Gomory cuts!
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s1 = 6 - x1 - x2

s2 = 45 - 9x1 - 5x2
 3x1 + 2x2 ≤ 15

To express the Gomory cut   

0.75 s1 + 0.25 s2  0.75 

In terms of the decision variables, we perform the substitution:
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654321
x1

9

8

7

6

5

4

3

2

1

x2

z*
ILP = 40

9x1 + 5x2 = 15

3x1 + 2x2 ≤ 15   Gomory cut

optimal solution of ILP

x1 + x2 = 6

optimal solution x*
LP of the current linear relaxation

Very special case: original constraints + cut  ideal formulation!

In general we need to add a (very) large number of cuts.
E. Amaldi – Foundations of Operations Research – Politecnico di Milano



15

5.3.3 Cutting plane method with fractional Gomory cuts

but often very large

Theorem: If the ILP has a finite optimal solution, the cutting plane
method finds one after adding a finite number of Gomory cuts.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

BEGIN
Solve the linear relaxation min{cTx : Ax = b, x ≥ 0} 
and let x*

LP be an optimal basic feasible solution;
WHILE x*

LP has fractional components DO
Select a basic variable with a fractional value;
Generate the corresponding Gomory cut;
Add the constraint to the optimal tableau of the 
linear relaxation;
Perform one iteration of the dual simplex algorithm;

END-WHILE
END
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Example:

(ILP)

min -x2
3x1 + 2x2 ≤ 6
-3x1 + 2x2 ≤ 0

x1, x2 ≥ 0 integer

Solve the linear relaxation with the simplex algorithm:

x1 x2 x3 x4

-z 0 0 -1 0 0
x3 6 3 2 1 0
x4 0 -3 2 0 1

x3 = 6 – 3x1 – 2x2
x4 = 3x1 – 2x2
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x1 x2 x3 x4

-z 0 -3/2 0 0 ½
x3 6 6 0 1 -1
x2 0 -3/2 1 0 1/2

x1 x2 x3 x4

-z 3/2 0 0 ¼ ¼
x1 1 1 0 1/6 -1/6
x2 3/2 0 1 ¼ ¼

The optimal soluton x*=[1, 3/2, 0, 0]T has value z*
LP= -3/2  (vertex A).           

Generate the Gomory cut associated to the 2nd row:   

x2 + ¼ x3 + ¼ x4 = 3/2 ⇒   x2 + 0x3 + 0x4 ≤ 3/2

namely the constraint  x2 ≤ 1 (cut ). 

Adding to the fractional form ¼ x3 + ¼ x4 ≥ ½  the surplus variable x5 ≥ 0, 
we obtain: - ¼ x3 – ¼ x4 + x5 = - ½ .

E. Amaldi – Foundations of Operations Research – Politecnico di Milano
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Graphical representation

x2

x1

1

2

3

321

-3x1 + 2x2 ≤ 0

3x1 + 2x2 ≤ 6

 x2 ≤ 1

A = (1, 3/2)

B = (2/3, 1)A

B
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Adding the corresponding row to the tableau:

x1 x2 x3 x4 x5

-z 3/2 0 0 ¼ ¼ 0
x1 1 1 0 1/6 -1/6 0
x2 3/2 0 1 ¼ ¼ 0
x5 -1/2 0 0 -1/4 -1/4 1

In order to represent the cut in the space of the original variables, we
proceed by substitution: the new surplus variable x5 is expressed in
terms of only x1 and x2.

x5 = -1/2 + ¼ x3 + ¼ x4
= -1/2 + ¼  (6 – 3x1 – 2x2) ¼ (3x1 – 2x2)

=1 – x2
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We obtain the new optimal tableau:

x1 x2 x3 x4 x5

-z 1 0 0 0 0 1
x1 2/3 1 0 0 -1/3 2/3
x2 1 0 1 0 0 1
x3 2 0 0 1 1 -4

The optimal solution x* = [2/3, 1, 2, 0, 0]T is still fractional (vertex B). 

The integer form of the Gomory cut associated to the 1st row is

x1 – x4 ≤ 2/3 = 0, which by substiting x4 with x4 = 3x1 – 2x2 is equivalent

to -2x1 + 2x2 ≤ 0 (cut ).
E. Amaldi – Foundations of Operations Research – Politecnico di Milano
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Graphical representation

x2

x1

1

2

3

321

-3x1 + 2x2 ≤ 0

3x1 + 2x2 ≤ 6

 x2 ≤ 1

 x2 ≤ x1

A = (1, 3/2)

B = (2/3, 1)A

B
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x1 x2 x3 x4 x5 x6

-z 1 0 0 0 0 1 0
x1 2/3 1 0 0 -1/3 2/3 0
x2 1 0 1 0 0 1 0
x3 2 0 0 1 1 -4 0
x6 -2/3 0 0 0 -2/3 -2/3 1

x6 = -2/3 + 2/3x4 + 2/3x5
= -2/3(3 x1 – 2x2)

+ 2/3(1 – x2)
= 2x1 – 2x2

Since the fractional form of the cut is 2/3x4 + 2/3x5  2/3, it suffices to
include the surplus variable x6  0 and add the corresponding row to the
“extended” tableau:
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We obtain the optimal tableau:

The optimal solution of the linear relaxation x* = [1, 1, 1, 1, 0, 0]T

corresponds to the vertex C whose components are all integer.  

x1 x2 x3 X4 X5 x6

-z 1 0 0 0 0 1 0
x1 1 1 0 0 0 1 -1/2
x2 1 0 1 0 0 1 0
x3 1 0 0 1 0 -5 3/2
x4 1 0 0 0 1 1 -3/2
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Graphical representation

x2

x1

1

2

3

321

-3x1 + 2x2 ≤ 0

3x1 + 2x2 ≤ 6

 x2 ≤ 1

 x2 ≤ x1

A = (1, 3/2)

B = (2/3, 1)

C = (1,  1)

A

B
C
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Observation: 

The formulation is not ideal (the polytope has still a fractional vertex), the
constraint x1 + x2 ≤ 2 that is needed to describe conv(X ) is not required for
this objective function.
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There exist other types of generic cutting planes (different from the
fractional Gomory cuts) and a large number of classes of cutting planes
for specific problems.

The “deepest” cuts are the “facets” of conv(X) !

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

The thorough study of the combinatorial structure of various problems
(e.g., TSP, set covering, set packing,…) led to

• characterization of entire classes of facets,

• efficient procedures for generating them.

5.3.4  Generic and specific cutting planes
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The “combined” Branch and Cut approach aims at overcoming the
disadvantages of pure Branch-and-Bound (B&B) and pure cutting
plane methods.

For each subproblem (node) of B&B, several cutting planes are
generated to improve the bound and try to find an optimal integer
solution. Whenever the cutting planes become less effective, cut
generation is stopped and a branching operation is performed.

Advantages: The cuts tend to strengthen the formulation (linear
relaxation) of the various subproblems; the long series of cuts without
sensible improvement are interrupted by branching operations.

5.3.5  Idea of Branch and Cut


