
1

5.1 Branch and Bound method

Idea: Reduce the solution of a difficult problem to that of a sequence of
simpler subproblems by (recursive) partition of the feasible region X.

Consider a generic optimization problem

min{ c(x) : x X }

Applicable to discrete and continuous optimization problems.

Two main components: branching and bounding.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

2

z = min{ c(x) : x X }

Branching:

Partition X into k subsets
X = X1 … Xk (with Xi Xj = for each pair i j)

and let
zi = min{ c(x) : x Xi } for i =1,…, k.

Clearly z = min{ c(x) : x X } = min{z1,…, zk}

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

3

Bounding technique:

For each subproblem zi = min{ c(x) : x Xi }

i) determine an optimal solution of min{ c(x) : x Xi } (explicit), or
ii) prove that Xi = (explicit), or
iii) prove that zi ≥ z’ objective function value of the best feasible

solution found so far (implicit)

If the subproblem is not “solved” we generate new subproblems by
further partition.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

4

Branching:
Partition the feasible region X into subregions (subdivision in
exhaustive and exclusive subregions).

Given an ILP min{ cTx : Ax = b, x ≥ 0 integer }

5.1.1 Branch and Bound for ILP

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Achieved by solving the linear relaxation of the ILP

min{ cTx : Ax = b, x ≥ 0 }

denote by x an optimal solution and zLP = cTx the optimal value.

5

Bounding:

Determine a lower “bound” (if minimization ILP) on the
optimal value zi of a subproblem of ILP by solving its linear
relaxation.

If x integer, x is also optimal for ILP, otherwise

 xh fractional and we consider the two subproblems:

ILP1: min{ cTx : Ax = b, xh ≤ xh , x ≥ 0 integer }

ILP2: min{ cTx : Ax = b, xh ≥ xh +1, x ≥ 0 integer }

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

654321
x1

9

8

7

6

5

4

3

2

1

x2

z = 20

x LP = zLP = 41.2515/4
9/4

max z = 8x1 + 5x2
x1 + x2 ≤ 6

9x1+5x2 ≤ 45
x1, x2 ≥ 0 integer

(ILP)

Example:

zLP≥ zILP

9x1 + 5x2 = 45

x1 + x2 = 6

6

Since x1 and x2 are fractional, select one of them for branching.
for instance x1

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

7

The feasible region X is partitioned into X1 and X2 by imposing:

x1 ≤ x1 = 3 or x1 ≥ x1 +1 = 4 exhaustive and exclusive
constraints

654321
x1

9

8

7

6

5

4

3

2

1

x2

z = 20

Subproblem S1
subregion X1 Subproblem S2

subregion X2

sol. x LP2 = with zLP2 = 41
4

9/5

sol. x LP1 = with zLP1 = 393
3

Integer solution ! ⇒ zILP1 = zLP1

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

8

After considering X1, best feasible (integer) solution found so far:

x’ = with z’ = 39.3
3

Since zLP2 = 41 > 39, X2 may contain a better feasible solution of ILP.

⇒ Partition X2 into X3 and X4 by imposing:

x2 ≤ x2 =1 or x2 ≥ x2 +1=2

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

9

z = 20

x2 = 2

x2 = 11

2

3

4

x2

1 2 3 4 5 6
x1 Subproblem S3

subregion X3

Subproblem S4 is infeasible (X4 = ø)

sol. x LP3 = with zLP3 = 365/940/9
1

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

10

Branching tree:

LP

S1
S2

S3 S4

x1 ≥ 4x1 ≤ 3

x2 ≤ 1 x2 ≥ 2
zLP2 = 41.25

zLP3 = 365/9 infeasible X4 = ø

zLP1 = 39
integer sol.

Best feasible
solution found
so far

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

11

Since zLP3 = 365/9 > 39, X3 may contain a better feasible solution of ILP.

⇒ Partition X3 into X5 and X6 by imposing:

x1 ≤ x1 = 4 or x1 ≥ x1 +1 = 540/9
1x LP3 =

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

12

z = 20

Subproblem S5

opt. sol. of S5: x LP5 = integer with zLP5 = 374
1

1

2

3

4

x2

1 2 3 4 5 6
x1

x1 = 4 x1 = 5 unique feasible solution of S6

5
0

x LP6 = integer

zLP6 = 40

Branch & Bound is an exact method (it guarantees an optimal solution).
E. Amaldi – Foundations of Operations Research – Politecnico di Milano

x LP6 = integer

Integer solution x LP5 (feasible for ILP) but with worse obj. fct. value of

x’= with z’ = 39.3
3

x LP6 is the best integer solution found ⇒ optimal solution.

13

Branching tree

9/4
15/4
165/4

2

1

=x
=x
=z

LP

LP

3
3
39

2

1

1

=x
=x
=z

S

LP

9/5
4
41

2

1

2

=x
=x
=z

S

LP

1
40/9
365/9

2

1

3

=x
=x
=z

S

LP

S4
X4 = ø

1
4
37

2

1

5

=x
=x
=z

S

LP

0
5
40

2

1

6

=x
=x
=z

S

LP

root

integerinteger

infeasible

x1 ≤ 3

x2 ≤ 1

x1 ≤ 4

x1≥ 4

x2≥ 2

x1≥ 5

optimal
integer sol.

z*
ILP = 40

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

14

The branching tree may not contain all possible nodes

(2d leaves)

A node of the tree has no child – is “fathomed”– if

• initial constraints + those on the arcs from the root are infeasible
(e.g. S4)

• optimal solution of the linear relaxation is integer (e.g. S1)
 the value cTxLP of the optimal solution xLP of the linear relaxation is

worse than that of the best feasible solution of ILP found so far.

≡ Bounding criterion

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

15

Observation: In the third case the feasible subregion of the subproblem
associated to that node cannot contain an integer feasible solution that
is better than the best feasible solution of ILP found so far!

Bounding criterion often allows to “discard” a number of nodes
(subproblems).

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

16

Choice of the node (subproblem) to examine:

• First deeper nodes (depth-first search strategy)

Simple recursive procedure, it is easy to reoptimize but it may
be costly in case of wrong choice.

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

• First more promising nodes (best-bound first strategy)

with the best value of linear relaxation

Typically generates a smaller number of nodes but
suproblems are less constrained⇒ takes longer to find a
first feasible solution and to improve it.

17

Choice of the (fractional) variable for branching

• It may not be the best choice to select the variable xh whose
fractional value is closer to 0,5 (hoping to obtain two
subproblems that are more stringent and balanced).

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

• Strong branching: try to branch on some of candidate
variables (fractional basic ones), evaluate the corresponding
objective function values, and actually branch on the variable
that yields the best improvement in the objective function.

No need to solve the linear relaxations of the ILP subproblems from
scratch with, for instance, the two-phase Simplex algorithm.

To efficiently find an optimal solution of the strengthened linear
relaxation with a new constraint, we can exploit the optimal tableau of
the previous linear relaxation and apply a single iteration of the Dual
simplex method (variant of the Simplex method not covered here).

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Efficient solution of the linear relaxations

18

19

Branch & Bound is also applicable to mixed ILPs:

when branching just consider the fractional variables that must be
integer.

General method that can be adapted to tackle any discrete
optimization problem and many nonlinear optimization problems.

e.g., scheduling, traveling salesman problem,…

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Applicability of Branch and Bound approach

20

We “just” need

• Technique to partition a set of feasible solutions into two or more
subsets of feasible solutions (branch).

• Procedure to determine a bound on the cost of any solution in such a
subset of feasible solutions (bound).

E. Amaldi – Foundations of Operations Research – Politecnico di Milano

Observation: Branch-and-Bound can also be used as a heuristic by
imposing an upper bound on the computing time or on
the number of nodes that are examined.

