
ex-5.1-5.3 Foundations of Operations Research Prof. E. Amaldi

5.1 Branch-and-Bound

Given the integer linear program

max z = 3x1 + 4x2

2x1 + x2 ≤ 6

2x1 + 3x2 ≤ 9

x1, x2 ≥ 0 integer

solve it via the Branch-and-Bound method (solving graphically the continuous relaxation of
each subproblem encountered in the enumeration tree). Branch on the fractional variable with
fractional value closest to 1

2
. Among the set of active nodes, pick that with the most promising

bound.

5.2 Branch-and-Bound for 0-1 knapsack

A bank has 14 million Euro, which can be invested into stocks of four companies (1, 2, 3, and
4). The table reports, for each company, the net revenue and the amount of money that must
be invested into it.

Company 1 2 3 4

Revenue 16 22 12 8
Money 5 7 4 3

Give an Integer Linear Programming formulation for the problem of choosing a set of com-
panies so as to maximize the total revenue. Note that no partial investment can be done, i.e.,
for each company we can either invest into it or not. Solve the problem with a Branch-and-
Bound algorithm. Show that the continuous relaxation of the original problem and the resulting
subproblems can be solved to optimality with a simple greedy algorithm.

5.3 Cutting plane algorithm

Given the integer linear program

min x1 − 2x2

− 4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4

x1, x2 ≥ 0 integer

solve it via the cutting plane method with Gomory’s fractional cutting planes.

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 1



ex-5.1-5.3 Foundations of Operations Research Prof. E. Amaldi

Solution

5.1 Branch-and-Bound

The enumeration tree is reported in Figure 1. The graphical solution of each subproblem is
reported. The subproblems are solved in the following order: P1, P2, P3, P4, P5, P6, P7. Note
that when the optimal value z̄ of a subproblem is fractional, we can round the upper bound
given by the subproblem to ⌊z̄⌋. For instance, in P1 we obtain the bound ⌊51

4
⌋ = 12.

After solving P7, we observe that P6 yields an integer solution which is worse than that of P7,
which is therefore discarded. We also observe that P2 yields an upper bound which is smaller
than the value of the best feasible solution found so far (in P7). The node is therefore pruned.
The optimal solution (found in P7) is x∗ = (0, 3) with objective function value z∗ = 12.
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(1) (2)

P1: x̄ = (1) ∩ (2)
{

x̄2 = −2x̄1 + 6

x̄2 = −2
3
x̄1 + 3

x̄ =
(

9
4
, 3
2

)

, z̄ = 51
4
.

(1) (2)
(3)

P2: x̄ = (1) ∩ (3)
{

x̄2 = −2x̄1 + 6

x̄2 = 1

x̄ =
(

5
2
, 1
)

, z̄ = 23
2
.

(1) (2)

(3)

P3: x̄ = (2) ∩ (3)
{

x̄2 = −2
3
x̄1 + 3

x̄2 = 2

x̄ =
(

3
2
, 2
)

, z̄ = 25
2
.

(1) (2)

(3)

(4)

P4: x̄ = (2) ∩ (4)
{

x̄2 = −2
3
x̄1 + 3

x̄1 = 1

x̄ =
(

1, 7
3

)

, z̄ = 37
3
.

(1) (2)

(3)

(4)

P5: infeasible

(1) (2)

(3)

(4)

P6: x̄ = (3) ∩ (4)
x̄ = (1, 2), z̄ = 11.

(1) (2)

(4)

(3)

P7: x̄ = (2) ∩ (3)
x̄ = (0, 3), z̄ = 12.

x2 ≤ 1 x2 ≥ 2

x1 ≤ 1 x1 ≥ 2

x2 ≤ 2 x2 ≥ 3

11.5 < 12: stop

Figure 1: Enumeration tree for problem 5.1
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5.2 Branch-and-Bound for 0-1 knapsack

The integer linear programming formulation for the problem is

max 16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

x1, x2, x3, x4 ∈ {0, 1}

and its linear programming relaxation is

max 16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

0 ≤ xi ≤ 1 ∀i ∈ {1, 2, 3, 4}.

To find an optimal solution to the linear programming relaxation of the knapsack problem,
there is no need to use the two-phase Simplex method. We can use the following simple greedy
algorithm. First, sort the variables by nonincreasing revenue and cost ratio. Note that in our
case

(16/5, 22/7, 12/4, 8/3) = (3.2, 3.14, 3, 2.66)

and the variables are already ordered appropriately. Then, consider the variables in that order
and assign the largest possible value to the variable under consideration xi′ as long as

∑

i<i′ ci ≤

B. More precisely, we set xi′ = 1 if
∑

i≤i′ ci ≤ B and xi′ =
B−

∑
i<i′

ci

c
i′

if
∑

i<i′ ci + ci′ > B, and

all the other variables to zero.

For instance, at node 1 we have: x1 = 1 (5 units are used), x2 = 1 (7 units), x3 =
1
2
(2/4=1/2

units). Since, at each branching iteration, we set a variable either to 0 or 1, this greedy procedure
for solving the linear programming relaxation of the knapsack problem can be applied in any
node of the enumeration tree, by fixing the approriate variables.

The enumeration tree is given in Figure 2. Some observations:

• The index t indicates the order by which the subproblems are solved.

• Since all variables are integer, whenever a subproblem yields a solution with fractional
value, we round it to ⌊z̄⌋.

• The lower bounds (LB) is not computed at each node (to do this, a heuristic should
be applied). We update it whenever a subproblem yields a feasible solution. Note that
this value is NOT related to the specific subproblem, as it depends only on the iteration.
Indeed, at each iteration t, LB corresponds to the value of the best feasible solution found
so far in any part of the enumeration tree. For instance, in subproblem 4 we find a feasible
solution of value z̄ = 36. Since it is the first that is found and LB still has the initial value
of −∞, we set LB to 36.

• In subproblem 6 an integer solution is found and the node is pruned by feasibility.

• Subproblem 7 is infeasible, since x̄1 = x̄2 = x̄3 = 1 require a budget of 16 > 14. The node
is pruned by infeasibility.
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• Subproblem 8 yields an upper bound of z̄ = 38 which is strictly smaller than the current
LB of 42. The node is pruned by bound.

• The same happens for subproblem 9, where z̄ = 42 + 6
7
. The upper bound is ⌊z̄⌋ = 42,

which is strictly smaller than the current LB of value 42. Node 9 is pruned by bound.

The final optimal solution, which is found in node 6, is x∗ = (0, 1, 1, 1), of value 42.

5

6 7

98

2 3

1

4

z̄ = 44

x̄ = (1, 1, 1

2
, 0)

UB=44

LB=−∞

z̄ = 43 + 1

3

x̄ = (1, 1,0, 2

3
)

UB=43

LB=42

z̄ = 43 + 5

7

x̄ = (1, 5

7
,1, 0)

UB=43

LB=−∞

z̄ = 36

x̄ = (1,0,1, 1)

UB=36

LB=36

z̄ = 43 + 3

5

x̄ = ( 3
5
,1,1, 0)

UB=43

LB=36

z̄ = 42

x̄ = (0,1,1, 1)

UB=42

LB=42, Opt. sol.

Not
feasible

z̄ = 38

x̄ = (1, 1,0,0)

UB=38

LB=42

z̄ = 42 + 6

7

x̄ = (1, 6

7
,0,1)

UB=42

LB=42

t = 1

t = 2

t = 3 t = 4

t = 5 t = 6

t = 7

t = 8 t = 9

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x2 = 0 x2 = 1

x1 = 0 x1 = 1

Figure 2: Enumeration tree for problem 5.2
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5.3 Cutting plane algorithm

The continuous relaxation of the problem at hand, reduced to standard form, reads

min x1 − 2x2

− 4x1 + 6x2 + x3 = 9

x1 + x2 + x4 = 4

x1, x2, x3, x4 ≥ 0,

were x3, x4 are slack variables.

We solve it via the primal simplex method. The initial feasible basic solution is xB = (x3, x4).
We obtain the following sequence of tableaux, where the pivot element is denoted by the symbol
.

x1 x2 x3 x4
0 1 -2 0 0

9 -4 6 1 0
4 1 1 0 1

x1 x2 x3 x4
3 −1

3
0 1

3
0

3
2

−2
3

1 1
6

0
5
2

5
3

0 −1
6

1

x1 x2 x3 x4
7
2

0 0 3
10

1
5

5
2

0 1 1
10

2
5

3
2

1 0 − 1
10

3
5

The optimal solution to the linear programming relaxation is x̄ = (3
2
, 5
2
), where x3 = x4 = 0

(see Figure 3).

(1)

(2)

x̄

Figure 3: Graphical solution to problem 5.3

We derive a Gomory fractional cut from the first row of the optimal tableau x2+
1
10
x3+

2
5
x4 =

5
2
.

The cut is defined as
xi +

∑

j∈N

⌊āij⌋xj ≤ ⌊b̄i⌋, (1)
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where F is the set of the indices of the nonbasic variables and i is the index of the basic variable
corresponding to the tableau row that is chosen. We obtain the cut x2 ≤ 2 (see Figure 4
(constraint (3)).

The cut is to be added to the tableau. Note that, in the current form, it is not a function
of the nonbasic variables x3, x4. Instead of adding it to the tableau and performing some pivot
operations to restore the correct form of the tableau, we can write the fractional form of the
cut. Considering the ith row of the optimal tableau

xi +
∑

j∈N

āijxj = b̄i

and subtracting from it the cut (1), we obtain

∑

j∈N

(āij − ⌊āij⌋)xj ≥ (b̄i − ⌊b̄i⌋).

In our case, we have
1

10
x3 +

2

5
x4 ≥

1

2

which, by introducing a surplus variable x5 ≥ 0 becomes

1

10
x3 +

2

5
x4 − x5 =

1

2
.

Observe that x5 only occurs in the new row. Therefore, it is directly added to the set of basic
variables. We multiply the cut by -1, obtaining

−
1

10
x3 −

2

5
x4 + x5 = −

1

2
.

We obtain the new tableau

x1 x2 x3 x4 x5
7
2

0 0 3
10

1
5

0
5
2

0 1 1
10

2
5

0
3
2

1 0 − 1
10

3
5

0

−1
2

0 0 − 1
10

−2
5

1

We reoptimize the tableau via a single iteration of the dual simplex algorithm (involving an
appropriate rule, not covered in this course, for selecting the non basic variable that enters the
basis). We perform a pivoting operation on the highlighted element

x1 x2 x3 x4 x5
7
2

0 0 3
10

1
5

0
5
2

0 1 1
10

2
5

0
3
2

1 0 − 1
10

3
5

0

−1
2

0 0 − 1
10

−2
5

1
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(1)

(2)

(3)

x̄

x̃

Figure 4: First Gomory cut for problem 5.3

obtaining the following optimal tableau of the linear programming relaxation

x1 x2 x3 x4 x5
13
4

0 0 1
4

0 1
2

2 0 1 0 0 1
3
4

1 0 −1
4

0 3
2

5
4

0 0 1
4

1 −5
2

corresponding to the optimal LP solution x̃ = (3
4
, 2). Since it is not integer, we perform another

iteration of the cutting plane method.

We pick the second row

x1 −
1

4
x3 +

3

2
x5 =

3

4
,

from which we deduce the Gomory fractional cut x1 − x3 + x5 ≤ 0 which, in the space of the
original variable, amounts to −3x1 + 5x2 ≤ 7. Its fractional version is

3

4
x3 +

1

2
x5 ≥

3

4
.

We obtain the tableau

x1 x2 x3 x4 x5 x6
13
4

0 0 1
4

0 1
2

0

2 0 1 0 0 1 0
3
4

1 0 −1
4

0 3
2

0
5
4

0 0 1
4

1 −5
2

0
−3

4
0 0 −3

4
0 −1

2
1

Performing the pivot operation
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x1 x2 x3 x4 x5 x6
13
4

0 0 1
4

0 1
2

0

2 0 1 0 0 1 0
3
4

1 0 −1
4

0 3
2

0
5
4

0 0 1
4

1 −5
2

0

−3
4

0 0 −3
4

0 −1
2

1

we obtain the tableau

x1 x2 x3 x4 x5 x6
3 0 0 0 0 1

3
1
3

2 0 1 0 0 1 0
1 1 0 0 0 5

3
−1

3

1 0 0 0 1 −8
3

1
3

1 0 0 1 0 2
3

−4
3

which yields the integer solution x∗ = (1, 2), shown in Figure 5 (together with the last Gomory
fractional cut that was added).

(1)

(2)

(3)

(4)

x̄

x̃
x∗

Figure 5: Last Gomory cut for problem 5.3
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