4.4 Linear programming dual

Write the dual of the following linear program

$$
\begin{aligned}
& \begin{aligned}
\min & 2 x_{2}+x_{3} \\
& -3 x_{4} \\
& +2 x_{4} \geq 2
\end{aligned} \\
& 2 x_{2}+x_{3}=4 \\
& 2 x_{1} \quad-x_{3}+x_{4} \leq 1 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 \\
& x_{3}, \quad x_{4} \text { unrestricted }
\end{aligned}
$$

4.5 Dual of the transportation problem and its economic interpretation

A company produces a single type of good in m factories and stores it in n warehouses. Suppose that the factory i, with $i \in\{1, \ldots, m\}$, has a production capacity of b_{i} units, and the warehouse j, with $j \in\{1, \ldots, n\}$, requires d_{j} units. Let $c_{i j}$ be the unit transportation cost from factory i to warehouse j.

Consider the problem of determining a transportation plan that minimizes the (transportation) costs, while satisfying the factory capacities and the warehouse demands.

If $x_{i j}$ denotes the amount of product transported from factory i to warehouse j, we have the following Linear Programming formulation:

$$
\begin{aligned}
\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} & & & \\
-\sum_{j=1}^{n} x_{i j} & \geq-b_{i} & & i \in\{1, \ldots, m\} \\
\sum_{i=1}^{m} x_{i j} & \geq d_{j} \quad & & j \in\{1, \ldots, n\} \\
x_{i j} & \geq 0 & & i \in\{1, \ldots, m\} \quad j \in\{1, \ldots, n\} .
\end{aligned}
$$

Without loss of generality, we assume that the total production capacity satisfies $\sum_{i=1}^{m} b_{i}=$ $\sum_{j=1}^{n} d_{j}$. Indeed, if $\sum_{i=1}^{m} b_{i}>\sum_{j=1}^{n} d_{j}$, we can introduce a dummy $(n+1)$-th warehouse with demand $\sum_{i=1}^{m} b_{i}-\sum_{j=1}^{n} d_{j}$ and zero transportation costs.

Determine the dual of the above Linear Programming formulation and provide an economic interpretation of the dual.

4.6 Complementary slackness conditions

Given the linear programm

$$
\begin{aligned}
& \text { (P) } \quad \max 2 x_{1}+x_{2} \\
& x_{1}+2 x_{2} \leq 14 \\
& 2 x_{1}-x_{2} \leq 10 \\
& x_{1}-x_{2} \leq 3 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

a) write its dual,
b) check that $\underline{\bar{x}}=\left(\frac{20}{3}, \frac{11}{3}\right)$ is a feasible solution of (P),
c) show that $\underline{\bar{x}}$ is also an optimal solution (P) by applying the complementary slackness conditions,
d) derive an optimal solution of the dual.

SOLUTION

4.4 Linear programming dual

The dual of the given linear program is

$$
\begin{aligned}
& \max 2 y_{1}+4 y_{2}+y_{3} \\
& y_{1} \quad+2 y_{3} \leq 0 \\
& -y_{1}+2 y_{2} \leq 2 \\
& y_{2}-y_{3}=1 \\
& 2 y_{1}+y_{3}=-3 \\
& y_{1} \geq 0 \\
& y_{2} \quad \text { unrestricted } \\
& y_{3} \leq 0 \text {. }
\end{aligned}
$$

4.5 Dual of the transportation problem and its economic interpretation

Let u_{i} and v_{j}, with $i \in I$ and with $j \in J$, be the dual variables associated to the two classes of constraints. Since in each column of the constraint matrix of the primal problem there are exactly two non-zero entries, with value -1 and +1 , appearing in rows corresponding to the fist and, respectively, the second class of constraints, we have the following dual problem:

$$
\begin{array}{cll}
\left(\mathbf{D}_{\mathbf{1}}\right) \max -\sum_{i=1}^{m} b_{i} u_{i}+\sum_{j=1}^{n} d_{j} v_{j} & & \\
v_{j}-u_{i} \leq c_{i j} & i \in\{1, \ldots, m\} & j \in\{1, \ldots, n\} \\
u_{i} \geq 0, v_{j} \geq 0 & i \in\{1, \ldots, m\} & j \in\{1, \ldots, n\}
\end{array}
$$

Economic interpretation. We suppose that the production company (company A) hires a logistics company to handle the transportation business (company B). This company buys all the products from the different factories, paying a unit price (cost) of u_{i} Euro at factory i. Then, it sells the products to the warehouses at a unit price of v_{j} Euro for warehouse j. The objective of company B is clearly to maximize the profit, that is

$$
\max -\sum_{i=1}^{m} b_{i} u_{i}+\sum_{j=1}^{n} d_{j} v_{j}
$$

Company B has to decide the prices u_{i} and v_{j}. These prices must clearly be competitive, that is, $v_{j}-u_{i} \leq c_{i j}$ for each pair i, j. Indeed, if for any pair i, j the prices are such that $v_{j}-u_{i}>c_{i j}$, the company A will not hire company B and will take care of the transportation directly.

4.6 Complementary slackness conditions

a) The dual of the given linear program is

$$
\begin{array}{rllrlll}
\left(D_{2}\right) \quad \min \quad 14 y_{1} & + & 10 y_{2} & + & 3 y_{3} & \\
& y_{1} & + & 2 y_{2} & + & y_{3} & \geq 2 \\
& 2 y_{1} & - & y_{2} & - & y_{3} & \geq 1 \\
& & & u_{1}, u_{2} \cdot y_{3} & >0
\end{array}
$$

b) $\underline{\bar{x}}=\left(\frac{20}{3}, \frac{11}{3}\right)$ is feasible, as it satisfies the constrains of $\left(P_{2}\right)$.
c-d) According to the complementary slackness theorem, a feasible solution $\underline{\bar{x}}=\left(x_{1}, x_{2}\right)$ for the primal and a feasible solution $\underline{\bar{y}}=\left(y_{1}, y_{2}, y_{3}\right)$ for the dual are optimal for the respective problems if and only if they satisfy

$$
\begin{array}{rlr}
y_{i}\left(a_{i}^{T} \underline{x}-b_{i}\right)=0 & \forall i \\
\left(c_{j}-\underline{y}^{T} A_{j}\right) x_{j}=0 & \forall j
\end{array}
$$

The complementary slackness conditions for the problem at hand are

$$
\begin{align*}
y_{1}\left(x_{1}+2 x_{2}-14\right) & =0 \tag{1}\\
y_{2}\left(2 x_{1}-x_{2}-10\right) & =0 \tag{2}\\
y_{3}\left(x_{1}-x_{2}-3\right) & =0 \tag{3}\\
x_{1}\left(y_{1}+2 y_{2}+y_{3}-2\right) & =0 \tag{4}\\
x_{2}\left(2 y_{1}-y_{2}-y_{3}-1\right) & =0 . \tag{5}
\end{align*}
$$

We obtain $\underline{\bar{y}}$ by substituting for $\underline{\bar{x}}$. Since $\underline{\bar{x}}=\left(\frac{20}{3}, \frac{11}{3}\right)$ satisfies as equations the first and third constraints of the primal but not the second constraint, we deduce $y_{2}=0$. Since $x_{1}>0$ and $x_{2}>0$, we obtain

$$
\begin{align*}
y_{1}+2 y_{2}+y_{3}-2 & =0 \tag{6}\\
2 y_{1}-y_{2}-y_{3}-1 & =0 \tag{7}\\
y_{2} & =0 \tag{8}
\end{align*}
$$

By solving the system, we obtain $\bar{y}=(1,0,1)$, which satisfies the dual constraints of D_{2}. Since $\underline{\bar{x}}$ is primal feasible and \bar{y} is dual feasible, the primal/dual pair $(\underline{\bar{x}}, \bar{y})$ satisfies the complementary slackness constraints and, therefore, \bar{x} is an optimal solution of the primal and $\underline{\bar{y}}$ is an optimal solution of the dual.
To double check, note that the objective function values of the respective problems of the two solutions are equal, namely, we have $\underline{c}^{T} \underline{x}=\underline{y}^{T} \underline{b}$.

