4.4 Linear programming dual

Write the dual of the following linear program

4.5 Dual of the transportation problem and its economic interpretation

A company produces a single type of good in m factories and stores it in n warehouses. Suppose that the factory i, with $i \in \{1, \ldots, m\}$, has a production capacity of b_i units, and the warehouse j, with $j \in \{1, \ldots, n\}$, requires d_j units. Let c_{ij} be the unit transportation cost from factory ito warehouse j.

Consider the problem of determining a transportation plan that minimizes the (transportation) costs, while satisfying the factory capacities and the warehouse demands.

If x_{ij} denotes the quantity of product transported from factory *i* to warehouse *j*, we have the following Linear Programming formulation:

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\ -\sum_{j=1}^{n} x_{ij} \ge -b_i \qquad i \in \{1, \dots, m\} \\ \sum_{i=1}^{m} x_{ij} \ge d_j \qquad j \in \{1, \dots, n\} \\ x_{ij} \ge 0 \qquad i \in \{1, \dots, m\} \quad j \in \{1, \dots, n\}$$

Without loss of generality, we assume that the total production capacity satisfies $\sum_{i=1}^{m} b_i = \sum_{j=1}^{n} d_j$. Indeed, if $\sum_{i=1}^{m} b_i > \sum_{j=1}^{n} d_j$, we can introduce a dummy (n+1)-th warehouse with demand $\sum_{i=1}^{m} b_i - \sum_{j=1}^{n} d_j$ and zero transportation costs.

Determine the dual of the above Linear Programming formulation and provide an economic interpretation of the dual.

4.6 Complementary slackness conditions

Given the linear programm

(P) max
$$2x_1 + x_2$$

 $x_1 + 2x_2 \le 14$
 $2x_1 - x_2 \le 10$
 $x_1 - x_2 \le 3$
 $x_1, x_2 \ge 0$

- a) write its dual,
- b) check that $\underline{\bar{x}} = (\frac{20}{3}, \frac{11}{3})$ is a feasible solution of (P),
- c) show that \underline{x} is also an optimal solution (P) by applying the complementary slackness conditions,
- d) derive an optimal solution of the dual.