4.4 Linear programming dual

Write the dual of the following linear program

$$
\begin{aligned}
& \begin{aligned}
\min & 2 x_{2}+x_{3} \\
& -3 x_{4} \\
& x_{1}-2 x_{4} \geq 2
\end{aligned} \\
& 2 x_{2}+x_{3}=4 \\
& 2 x_{1} \quad-x_{3}+x_{4} \leq 1 \\
& \begin{array}{l}
x_{1} \geq 0 \\
x_{2} \geq 0
\end{array} \\
& x_{3}, \quad x_{4} \text { unrestricted }
\end{aligned}
$$

4.5 Dual of the transportation problem and its economic interpretation

A company produces a single type of good in m factories and stores it in n warehouses. Suppose that the factory i, with $i \in\{1, \ldots, m\}$, has a production capacity of b_{i} units, and the warehouse j, with $j \in\{1, \ldots, n\}$, requires d_{j} units. Let $c_{i j}$ be the unit transportation cost from factory i to warehouse j.

Consider the problem of determining a transportation plan that minimizes the (transportation) costs, while satisfying the factory capacities and the warehouse demands.

If $x_{i j}$ denotes the quantity of product transported from factory i to warehouse j, we have the following Linear Programming formulation:

$$
\begin{array}{rlrl}
\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} & & \\
-\sum_{j=1}^{n} x_{i j} & \geq-b_{i} & i \in\{1, \ldots, m\} & \\
\sum_{i=1}^{m} x_{i j} & \geq d_{j} & j \in\{1, \ldots, n\} & \\
x_{i j} & \geq 0 & i \in\{1, \ldots, m\} \quad j \in\{1, \ldots, n\} .
\end{array}
$$

Without loss of generality, we assume that the total production capacity satisfies $\sum_{i=1}^{m} b_{i}=$ $\sum_{j=1}^{n} d_{j}$. Indeed, if $\sum_{i=1}^{m} b_{i}>\sum_{j=1}^{n} d_{j}$, we can introduce a dummy $(n+1)$-th warehouse with demand $\sum_{i=1}^{m} b_{i}-\sum_{j=1}^{n} d_{j}$ and zero transportation costs.

Determine the dual of the above Linear Programming formulation and provide an economic interpretation of the dual.

4.6 Complementary slackness conditions

Given the linear programm
(P) $\quad \max 2 x_{1}+x_{2}$

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 14 \\
& 2 x_{1}-x_{2} \leq 10 \\
& \begin{array}{cccc}
x_{1} & - & x_{2} & \leq \\
& x_{1}, & x_{2} & \geq 0
\end{array}
\end{aligned}
$$

a) write its dual,
b) check that $\underline{\bar{x}}=\left(\frac{20}{3}, \frac{11}{3}\right)$ is a feasible solution of (P),
c) show that $\underline{\bar{x}}$ is also an optimal solution (P) by applying the complementary slackness conditions,
d) derive an optimal solution of the dual.

