
ex-3.1-3.4 Foundations of Operations Research Prof. E. Amaldi

3.1 Algorithm complexity

Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n2)
and B is O(2n), where n is the size of the instance. Let nA

0 be the size of the largest instance that
can be solved in one hour with algorithm A on a given computer, and nB

0 be the corresponding
size for algorithm B. Denote by nA e nB the size of the largest instances that can be solved in
one hour on a computer that is 100 times faster. How large is nA with respect to nA

0 and nB

with respect to nB
0 ?

3.2 Size of a problem instance

Determine the size of an instance of the minimum cost spanning tree problem in terms of the
number of nodes n and the number of edges m.

3.3 Complexity of longest path problem and shortest simple path problem

A simple path in a directed graph is a path that visits each intermediate node at most once.
Consider the Max-SimplePath problem: Given a directed graph G = (N,A) with a rational
length associated to each arc, and a pair of nodes s and t, find a simple path of maximum total
length from s to t. Show that this problem is NP-hard.

To do so, show that the following recognition version of Max-SimplePath is NP-complete.

Max-SimplePath-r: Given a directed graph G = (N,A) with a rational length
associated to each arc, a pair of nodes s, t, and an integer K, does there exist a
simple path from s to t of length at least K?

[Hint: Consider the Hamiltonian-Circuit-r problem where, given a directed graph, we have
to decide whether it contains a Hamiltonian circuit. Describe a polynomial-time transformation
from Hamiltonian-Circuit-r to Max-SimplePath-r.]

Now consider the Min-SimplePath problem: Given a directed graph with rational arc costs,
and a pair of nodes s, t, we look for a shortest simple path from s to t. Why is it also NP-hard?

3.4 Complexity of a discrete optimization problem and ILP formulation size

Give an Integer Linear Programming formulation for the problem of finding a minimum cost
spanning tree in an undirected graph G = (N,E). How does the number of constraints grow
with the number of the nodes n = |N |? Is there a direct relationship between the size of an
ILP formulation (number of constraints and variables) and the difficulty of the corresponding
problem?

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 1

ex-3.1-3.4 Foundations of Operations Research Prof. E. Amaldi

Solution

3.1 Algorithm complexity

Let nA and nB denote the size of the largest instances that can be solved in one hour with
algorithms A and, respectively, B on a computer 100 times faster that the original one. Since,
by definition of nA

0 , (nA
0)

2 elementary operations are performed when using algorithm A on
the original computer, 100(nA

0)
2 operations can be executed on the faster machine. Therefore,

(nA)2 = 100(nA
0)

2 and hence nA = 10nA
0 . Similarly, for algorithm B, we have that 2n

B

0 elemen-

tary operations are performed on the original computer, 100 2n
B

0 are performed on the faster
one. Then 2n

B

= 100 2n
B

0 implies that nB = nB
0 + log2(100) < nB

0 + 7.
Note that the above considerations about the number of elementary operations performed in
one hour are true up to any multiplicative constant c.

To summarize, with the quadratic algorithm A we can solve instances that are 10 times
larger, while with the exponential algorithm B we can solve instances that are larger by a small
number of bits.

3.2 Size of a problem instance

An instance of the minimum cost spanning tree problem consists of a graph G = (N,E) with
an integer weight cij assigned to each edge {i, j} ∈ E. Without loss of generality we can assume
that m = |E| > n = |N |, otherwise the graph is not connected and it admits no spanning tree.

Recall that, given any integer i ∈ Z, ⌈log2 i⌉ + 1 bits are needed to code it in memory. The
“+1” addendum takes into account the sign bit. For nonnegative integers, ⌈log2 i⌉ bits suffice.

To describe any instance I of the minimum cost spanning tree problem, we need to store

• the values of n and m using ⌈log2 n⌉+ ⌈log2m⌉ bits,

• for each edge {i, j} ∈ E, the indices of the two nodes i and j, using 2⌈log2 n⌉ bits,

• for each edge {i, j} ∈ E, the weight cij using at most ⌈log2 cmax⌉+1 bits, where cmax := max{i,j}∈E cij .

In total we need
⌈log2 n⌉+ ⌈log2m⌉+m(2⌈log2 n⌉+ ⌈log2 cmax⌉+ 1)

bits. Since m > n, the size of an instance I, denoted by |I|, is thus O(m(log2 n+ log2 cmax)).

It is worth pointing out that usually the number of bits needed to code any numerical value
is considered as a constant. Indeed, if we use a 64 bit machine and we assume that all instances
to be dealt with in practice satisfy n ≤ 264, m ≤ 264 and cmax ≤ 264, the values of n, m and
of each cost cij can be stored in a single memory work. Under this assumption, the size of an
instance |I| is O(m). Recall that m is O(n2) for dense graphs and m is O(n) for sparse graphs.

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 2

ex-3.1-3.4 Foundations of Operations Research Prof. E. Amaldi

3.3 Complexity of longest path problem and shortest simple path problem

To prove thatMax-SimplePath-r isNP-complete, we need to (i) verify thatMax-SimplePath-
r belongs to NP and (ii) show that every other problem in NP can be reduced to Max-

SimplePath-r in polynomial time.

Max-SimplePath-r clearly belongs to NP. Indeed, (a) it is a recognition problem and (b)
given any solution to it (sequence of nodes), we can verify in polynomial time (linear time w.r.t.
to the number of nodes in G) that it is a path from s to t, it is simple, and it has a total cost
≥ K.

To verify (ii), we show that the problem Hamiltonian-Circuit-r, which is known to be
NP-complete, can be reduced in polynomial time to Max-SimplePath-r.

Hamiltonian-Circuit-r: Given a directed graph G′ = (N ′, A′), does it contain a Hamiltonian
circuit, i.e., a circuit visiting each node of G′ exactly once?

Given any instance of Hamiltonian-Circuit-r, it is easy to construct in polynomial time a
special instance of Max-SimplePath-r such that the answer to the Hamiltonian-Circuit-r
instance is yes if and only if the answer to the corresponding Max-SimplePath-r instance is
yes.

Let G′ = (N ′, A′) be the directed graph of the given instance of Hamiltonian-Circuit-r.
Consider the particular instance of Max-SimplePath-r defined by the directed graph G =
(N,A) where N = N ′, A = A′, and each arc has a unit length. Moreover, we take s = t as any
node in N and K = |N |. Clearly, G′ contains a Hamiltonian circuit if and only if G contains a
simple path from s to t of length at least |N |. Indeed, any Hamiltonian circuit is a simple path
from a node to itself with exactly |N | arcs. Note that the polynomial-time transformation is
very simple here because the graph in the Hamiltonian-Circuit-r can be directly used in the
Max-SimplePath-r instance and we just need to appropriately select the nodes s, t and the
value of K.

Let Max-SimplePath be the problem of, given a directed graph and a pair of nodes s and
t, finding a longest simple path from s to t. Since Max-SimplePath-r is NP-complete, Max-

SimplePath is NP-hard. Indeed, Max-SimplePath is at least as hard as Max-SimplePath-r
(an algorithm for the former problem could be used to solve the latter one) and is not in NP
(it isn’t a recognition problem).

To verify that the problem Min-SimplePath is also NP-hard, we just need to reduce in
polynomial time Max-SimplePath-r to the recognition version Min-SimplePath-r. Given
any instance of Max-SimplePath-r defined by G = (N,A), costs cij , nodes s, t and value K,
it suffices to consider the instance of Min-SimplePath-r with G′ = (N ′, A′), c′ij , K ′ where
N ′ = N , A′ = A, c′ij = −cij for all arcs (i, j) ∈ A′ and K ′ = −K.

3.4 Complexity of a discrete optimization problem and ILP formulation size

Consider any instance of the minimum spanning tree problem, which consists of an undirected
graph G = (N,E) with a cost cij assigned to each edge {i, j} ∈ E.

For each edge {i, j} ∈ E, we define a binary variable xij such that xij = 1 if {i, j} is in

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 3

ex-3.1-3.4 Foundations of Operations Research Prof. E. Amaldi

the spanning tree and xij = 0 otherwise. Then the problem can be formulated as the following
Integer Linear Program:

min
∑

{i,j}∈E

cijxij

s.t.
∑

{i,j}∈E

xij = |N | − 1 (cardinality)

∑

{i,j}∈E:i,j∈S

xij ≤ |S| − 1 ∀S ⊆ N : 2 ≤ |S| < |N | (subtour elimination)

xij ∈ {0, 1} ∀i, j ∈ N.

which contains a subtour elimination constraint for each proper subset S ⊂ N of cardinality at
least 2. For S = N the corresponding subtour elimination constraint amounts to the cardinality
constraint.

Note that, since there are 2n − 2 subtour elimination constraints, the size of the above ILP
formulation grows exponentially with the number of nodes n = |N | of G. Therefore, even if a
polynomial-time algorithm for solving these ILPs would exist, it would require exponential time
with respect to the size of the graph G.

This example shows that the size of an ILP formulation of a discrete optimization problem is
not directly related to its inherent computational complexity. What really matters is the prob-
lem structure. Indeed, Prim’s and Kruskal’s simple greedy algorithms exploit the (matroidal)
structure of the minimum spanning tree problem to find, for every instance, an optimal solution
in polynomial time.

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 4

