EX-3.1-3.4 FOUNDATIONS OF OPERATIONS RESEARCH Prof. E. Amaldi

3.1 Algorithm complexity

Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n?)
and B is O(2"), where n is the size of the instance. Let n{' be the size of the largest instance that
can be solved in one hour with algorithm A on a given computer, and nOB be the corresponding
size for algorithm B. Denote by n e n® the size of the largest instances that can be solved in
one hour on a computer that is 100 times faster. How large is n“ with respect to nf]“ and n?
with respect to n(])g ?

3.2 Size of a problem instance

Determine the size of an instance of the minimum spanning tree problem.

3.3 Complexity of longest path problem and shortest simple path problem

A simple path in a directed graph is a path that visits each intermediate node at most once.
Consider the MAX-SIMPLEPATH problem: Given a directed graph G = (N, A) with a rational
length associated to each arc, and a pair of nodes s and ¢, find a simple path of maximum total
length from s to t. Show that this problem is N"P-hard.

To do so, show that the following recognition version of MAX-SIMPLEPATH is NP-complete.

MAX-SIMPLEPATH-1: Given a directed graph G = (N, A) with a rational length
associated to each arc, a pair of nodes s,t, and an integer K, does there exist a
simple path from s to t of length at least K7

[Hint: Consider the HAMILTONIAN-CIRCUIT-r problem where, given a directed graph, we have
to decide whether it contains a Hamiltonian circuit. Describe a polynomial-time transformation
from HAMILTONIAN-CIRCUIT-r to MAX-SIMPLEPATH-T.]

Now consider the MIN-SIMPLEPATH problem: Given a directed graph with rational arc costs,
and a pair of nodes s, t, we look for a shortest simple path from s to t. Why is it also NP-hard?

3.4 Minimum spanning tree problem: complexity and ILP formulation size

Give an Integer Linear Programming formulation for the problem of finding a minimum cost
spanning tree in an undirected graph G = (V, E). How does the number of constraints grow
with the number of the nodes n = |V|? Is there a direct relationship between the size of an
ILP formulation (number of constraints and variables) and the difficulty of the corresponding
problem?
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