Exercise 2.8
 Application of Dynamic Programming

A company buys a new machine for $12 \mathrm{~K} €$.
Annual maintenance costs for the next five years:

Age (years)	Maintenance (K€)	Selling price (K€)
0	2	-
1	4	7
2	5	6
3	9	2
4	12	1

To avoid high maintenance costs of an older machine, the machine can be replaced at the beginning of the $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ or $5^{\text {th }}$ year with a new machine.

To simplify the model we assume that the cost of a new machine is constant ($12 \mathrm{~K} €$).

Objective: minimize the net total cost (price + maintenance - selling price) over the 5 year horizon.

Age	Main.	Sell.
0	2	-
1	4	7
2	5	6
3	9	2
4	12	1

If we buy a machine at beginning of $1^{\text {st }}$ year and sell it at the beginning of $\underline{2}^{\text {nd }}$ year, the net cost is: $12+2-7=7$

If we buy it at the beginning of 1st year and sell it at the beginning of 3rd year, the net cost is: $12+2+4-6=12$
etc...

Show how the problem of determining an optimal maintenancereplacement plan of minimum total cost (for the next 5 years) can be solved via Dynamic Programming.

Hint: Reduce it to a minimum cost path problem in an appropriate acyclic graph.

Find all the optimal maintenance-replacement plans.

Model:

Associate a node to the beginning of each year (node i at the beginning of the i-th year).
An arc (i, j) represents the choice of buying a machine at the beginning of the \underline{i}-th year and selling it at the beginning of the j-th year.

age		main
rec.		
0	2	-
1	4	7
2	5	6
3	9	2
4	12	1

$\mathrm{c}_{\mathrm{ij}}=$ cost to buy a machine at the beginning of the i-th year

+ maintenance costs during the years $i, i+1, \ldots, j-1$
- selling price of the old machine at the beginning of j-th year ${ }_{4}$

Any path from node 1 to node 6 corresponds to a maintenance and replacement plan for the machine and its cost amounts to the net total cost of this plan during the 5 years.

Since we wish to minimize the total net cost, we have to determine a minimum cot path from nodes 1 to 6 .

Since the graph G is acyclic we can apply Dynamic Programming (the nodes are already topologically ordered).

$$
L(1)=0 \quad[-]
$$

Entering arcs in node (2):

$$
\begin{array}{ll}
\rightarrow(1) \rightarrow(2) & L(1)+c_{12}= \\
\min & \\
& 0+7=7
\end{array}
$$

$$
L(2)=\min \{7\}=7 \quad[1]
$$

Entering arcs in node (3):

$$
\begin{array}{ll}
\rightarrow(1) \rightarrow(3) & L(1)+12= \\
& 0+12=\underline{12} \\
\rightarrow(2) \rightarrow(3) & L(2)+7= \\
\rightarrow & 7+7=14
\end{array}
$$

$$
\mathrm{L}(3)=\min \{\underline{12}, 14\}=12 \quad[1]
$$

Entering arcs in node (4):

$$
\begin{array}{ll}
\rightarrow(1) \rightarrow(4) & \begin{array}{l}
L(1)+21= \\
\\
\\
0+21=21
\end{array} \\
\rightarrow(2) \rightarrow(4) & L(2)+12= \\
& 7+12=19 \\
\min \\
\rightarrow(3) \rightarrow(4) & L(3)+7= \\
& 12+7=19
\end{array}
$$

$$
L(4)=\min \{21,19, \underline{19}\}=19 \quad[3]
$$

Entering arcs in node 5 :

$$
\begin{array}{ll}
\rightarrow(1) \rightarrow(5) & L(1)+31= \\
& 0+31=31 \\
\min \\
\rightarrow(2) \rightarrow(5) & L(2)+21= \\
& 7+21=28 \\
\rightarrow(3) \rightarrow(5) & L(3)+12=\longleftarrow \\
\rightarrow(4) \rightarrow(5) & 12+12=\underline{24} \\
\rightarrow(4)+7= \\
\rightarrow & 19+7=26
\end{array}
$$

$$
L(5)=\min \{31,28, \underline{24}, 26\}=24 \quad[3]
$$

Entering arcs in node (6):

$$
L(6)=\min \{44,38,33,31, \underline{31}\}=31^{\min }[5]
$$

$$
\begin{aligned}
& \rightarrow \text { (1) } \rightarrow \text { (6) } 0+44=44 \\
& \rightarrow \text { (2) } \rightarrow \text { (6) } 7+31=38 \\
& \rightarrow \text { (3) } \rightarrow \text { (6) } 12+21=33 \\
& \rightarrow \text { (4) } \rightarrow \text { (6) } 19+12=31 \longleftarrow \\
& \rightarrow(5) \rightarrow \text { (6) } 24+7=\underline{31} \longleftarrow
\end{aligned}
$$

Cost of a shortest path from (1) a (6) = minimum net cost of the corresponding maintenance and replacement plan during the 5 years.

