
ex-2.5-2.9 Foundations of Operations Research Prof. E. Amaldi

2.5 Shortest paths with nonnegative costs

Given the following directed graph, find a set of shortest paths from node 0 to all the other
nodes, using Dijkstra’s algorithm. Can we solve the problem with Dynamic Programming? If
yes, do so.
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2.6 Shortest paths with negative costs and ill-posedness

Given the following directed graph, find the shortest paths between all pairs of nodes, or show
that the problem is ill-posed by exhibiting a circuit of total negative cost.
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2.7 An application of Dynamic Programming to machine renewal

A company must buy a new machine and then determine a renewal (maintenance-replacement)
plan for the next 5 years, making sure that, at any point in time, the available machine works
properly. At the beginning of each year of the planning horizon, the company must decide
whether to keep the old machine or to substitute it with a new machine.

The maintenance costs and the expected revenue (when the machine is sold) clearly depend
on how old the machine is and they are indicated in the following table.

years maintenance (kEuro) revenue when sold (kEuro)

0 2 -
1 4 7
2 5 6
3 9 2
4 12 1
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To avoid high maintenance costs of an old machine, the machine can be sold at the beginning
of the second, third, fourth, and fifth year, and an new one can be bought. For the sake of
simplicity, we suppose that a new machine always costs 12K Euro.

Show that the problem of determing a machine renewal plan of minimum total net cost (total
cost for buying/rebuying the machine + maintenance costs - total revenue) can be solved via
Dynamic Programming by finding a shortest path in an ad hoc directed acyclic graph. Find an
optimal renewal plan. Is it unique?

2.8 Project planning

The preparation of the apple pie has long been a tradition at Rossi’s family. First the weight of
the ingredients has to be determined: flour, sugar, butter, eggs, apples, cream. The butter must
then be melted down, and added to a mixture of flour, sugar, and eggs. Apples must be added
to this new mixture, once they have been peeled and cut into thin slices. The mixture can then
be cooked, in the already heated oven. It is advisable to whip the cream only after the apple
slices have been added to the mixture. Once the cake is cooked, the cream is used to garnish it.

The following table reports the time needed for each activity.

Activity Time (minutes)

A Weight the ingredients 5
B Melt the butter 3
C Mix flour, eggs and sugar 5
D Peel the apples and cut them into slices 10
E Heat the oven 20
F Add butter to the mixture 8
G Add apples to the mixture 4
H Cook the mixture in the oven 40
I Whip the cream 10
L Garnish 5

Draw the graph (with activities associated to arcs) which represents the project precedence
relations. Determine the minimum total completion time of the project as well as the earliest
times and latest times associated to each node. Identify the critical activities and draw Gantt’s
chart at earliest.

2.9 Shortest paths with negative costs

Given the following directed graph, find the shortest paths between all pairs of nodes, or show
that the problem is ill-posed, by exhibiting a circuit of total negative cost.
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Solution

2.5 Shortest paths with nonnegative costs

Dijkstra’s algorithm determines a set of shortest paths from a given node s to all the other
nodes in the graph. It can be applied to any (directed) graph with nonnegative arc costs.

• Data structures: subset S ⊆ V of nodes with fixed labels (initialization S = {s}); n-
dimensional vector L where L(i) is the cost of a shortest path from s to i (initialization
L(s) = 0); n-dimensional vector p where p(i) is the predecessor of node i in the
shortest path from s to i (initialization p(s) = s).

• Description: at each iteration, we identify in the outgoing cut induced by S, δ+(S),
an arc (v, h) such that L(v) + cvh is minimum, where cvh is the cost of the arc (v, h).
Then we set S := S ∪ {h}, L(h) := L(v) + cvh and p(h) := v. The algorithm halts
when S = V .

Iterations:

• Initialization: S = {0}, L(0) = 0, p(0) = 0;

• (v, h) = (0, 1), L(1) = 1, p(1) = 0, S = {0, 1};

• (v, h) = (0, 2), L(2) = 1, p(2) = 0, S = {0, 1, 2};

• (v, h) = (0, 5), L(5) = 2, p(5) = 0, S = {0, 1, 2, 5};

• (v, h) = (0, 4), L(4) = 3, p(4) = 0, S = {0, 1, 2, 4, 5};

• (v, h) = (1, 3), L(3) = 3, p(3) = 1, S = {0, 1, 2, 3, 4, 5};

• (v, h) = (3, 7), L(7) = 3, p(7) = 3, S = {0, 1, 2, 3, 4, 5, 7};

• (v, h) = (5, 6), L(6) = 4, p(6) = 5, S = G: STOP;

The behaviour of the algorithm can be summarized as follows. In the pictures, a node
is highlighted if it belongs to S, while an arc is represented with a dashed line if it can
be selected in the current iteration (if it belongs to δ+(S)), and in a solid line when it is
chosen. The labels on the nodes in S indicate the cost of the shortest path from node 0.
When a dashed arc is incident to two nodes in S, it is removed. This way, the dashed arcs
always belongs to the cut induced by S. The arc (i, j) that is selected is always that with
minimum cost L(i) + cij .
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A topological order can be obtained as follows. At iteration i, for i = {1, . . . , n}, pick a
node with no incoming arcs, label it as ’node i’, remove it from the graph, iterate until all
nodes are removed, or there is no node with no incident arcs –in this case the graph is not
acyclic.

The graph we are dealing with is acyclic, and its node indices already correspond to a
topological order. The Dynamic Programming technique can therefore be applied. It has
complexity O(m), smaller than that of the Dijkstra algorithm of O(n2).

• L(0) = 0, p(0) = 0;

• L(1) = L(0) + c01 = 1, p(1) = 0;

• L(2) = min{L(0) + c02, L(1) + c12} = min{0 + 1, 1 + 2} = 1, p(2) = 0;

• L(3) = min{L(1) + c13, L(2) + c23} = min{1 + 2, 1 + 4} = 3, p(3) = 1;

• L(4) = min{L(0) + c04, L(3) + c34} = min{0 + 3, 3 + 1} = 3, p(4) = 0;

• L(5) = min{L(0) + c05, L(4) + c45} = min{0 + 2, 3 + 3} = 3, p(5) = 0;

• L(6) = min{L(4) + c46, L(5) + c56} = min{3 + 3, 2 + 2} = 3, p(6) = 5;

• L(7) = min{L(3)+c37, L(4)+c47, L(6)+c67} = min{3+0, 3+1, 4+4} = 3, p(7) = 3;

2.6 Shortest paths with negative costs and ill-posedness
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Since the graph contains negative arc costs, we use Floyd-Warshall’s algorithm that finds
a shortest path between each pair of nodes, or establishes that the problem is ill-posed by
exhibiting a circuit of negative cost. The graph can contain cycles, but such cycles have
to be of nonnegative cost. It has complexity O(n3), where n is the number of nodes in the
graph.

• Data structures: let D be an n× n matrix whose element dij is, at the beginning of
the algorithm, the cost cij of arc (i, j) and, at the end, the cost of a shortest path
from i to j. Let P be an n×n matrix whose element pij is the precedecessor of node
j in the shortest path from i to j.

• Description: We consider in turn each node of the graph according to the order of
the indices. At iteration h, we consider the node with index h and, for every pair
of nodes (i, j) with i 6= h and j 6= h (but including the case i = j), we compare the
length of the path via h, that is, dih + dhj , with the current dij . If dih + dhj < dij ,
the matrices D and P are updated: we set dij = dih + dhj and pij is updated to phj .
The algorithm halts when one of the following conditions holds

(1) all nodes have been selected for the triangulation operation,

(2) a circuit of negative cost has been found: the problem of finding a shortest
path (not necessarily simple!) it not well defined. Indeed, it is possible to go
through the negative cost circuit an arbitrary number of times, reducing the cost
of the path containing such circuit at each iteration. The problem is, evidently,
unbounded.

(a) Initial configuration
D 1 2 3 4

1 0 3 8 3
2 5 0 4 10
3 -2 ∞ 0 4
4 ∞ -7 ∞ 0

P 1 2 3 4

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
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(b) Iteration h = 1 (triangulation on node 1)

d21 + d12 = 8 > d22 = 0

d21 + d13 = 13 > d23 = 4

d21 + d14 = 8 < d24 = 10

⇒ update d24, p24

d31 + d12 = 1 < d32 = ∞

⇒ update d32, p32

d31 + d13 = 6 > d33 = 0

d31 + d14 = 1 < d34 = 4

⇒ update d34, p34

d41 + dij = ∞ (∀i, j)

D 1 2 3 4

1 0 3 8 3
2 5 0 4 8

3 -2 1 0 1

4 ∞ -7 ∞ 0

P 1 2 3 4

1 1 1 1 1
2 2 2 2 1

3 3 1 3 1

4 4 4 4 4

(c) Iteration h = 2 (triangulation on node 2)

d12 + d21 = 8 > d11 = 0

d12 + d23 = 7 < d13 = 8

⇒ update d13, p13

d12 + d24 = 11 > d24 = 3

d32 + d21 = 6 > d31 = −2

d32 + d23 = 5 > d33 = 0

d32 + d24 = 9 > d34 = 1

d42 + d21 = −2 < d41 = ∞

⇒ update d41, p41

d42 + d23 = −3 < d43 = ∞

⇒ update d43, p43

d42 + d24 = 1 > d44 = 0

D 1 2 3 4

1 0 3 7 3
2 5 0 4 8
3 -2 1 0 1
4 -2 -7 -3 0

P 1 2 3 4

1 1 1 2 1
2 2 2 2 1
3 3 1 3 1
4 2 4 2 4
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(d) Iteration h = 3 (triangulation on node 3)

d13 + d31 = 5 > d11 = 0

d13 + d32 = 8 > d12 = 3

d13 + d34 = 8 > d14 = 3

d23 + d31 = 2 < d21 = 5

⇒ update d21, p21

d23 + d32 = 5 > d22 = 0

d23 + d34 = 5 < d24 = 8

⇒ update d24, p24

d43 + d31 = −5 < d41 = −2

⇒ update d41, p41

d43 + d32 = −2 > d42 = −7

d43 + d34 = −2 < d44 = 0

⇒ update d44, p44

D 1 2 3 4

1 0 3 7 3
2 2 0 4 5

3 -2 1 0 1
4 -5 -7 -3 -2

P 1 2 3 4

1 1 1 2 1
2 3 2 2 1

3 3 1 3 1
4 3 4 2 1

We obtain d44 = −2 < 0 and the algorithm halts: we found a circuit with a total
negative cost of -2 (4 → 2 → 3 → 1 → 4).

2.7 An application of Dynamic Programming to machine renewal

Consider a directed graph with six nodes: nodes 1 to 5 are associated to the beginning
of each year, while node 6 corresponds to the end of the 5 year time horizon. For each
pair i, j, with i, j = 1, . . . , 5 and i < j, the arc (i, j) that represents the choice of bying a
machine at the beginning of year i and selling it at the beginning of year j. The cost cij
of arc (i, j) is defined as the net cost of the corresponding ”partial renewal plan” from the
beginning of year i to the beginning of year j, namely

cij = cb + (

j−i−1∑

k=0

mk)− rj−i,

where cb is the buying cost of 12000 Euro, mk is the annual maintenance cost for a machine
that is k years old, and rk is the selling price of a machine which is k years old. We obtain
the following directed acyclic graph:

7 7 7 7 7

12

12

12

12

21

21

21

31

31

44

1 2 3 5 64

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 8



ex-2.5-2.9 Foundations of Operations Research Prof. E. Amaldi

Any path from node 1 to node 6 corresponds to a (complete) renewal plan whose total net
cost is equivalent to the total cost of the path. To look for a shortest path from node 1 to
node 6, we apply the Dynamic Programming algorithm, obtaining

(a) L(1) = 0

(b) L(2) = 7, pred(2) = 1

(c) L(3) = 12, pred(3) = 1

(d) L(4) = 19, pred(4) = 3

(e) L(5) = 24, pred(5) = 3

(f) L(6) = 31, pred(6) = 5.

A shortest path (of cost 31) is 1 → 3 → 5 → 6. It amounts to buy a new machine every
2 years. Note that there are two other optimal solutions: path 1 → 2 → 4 → 6 and path
1 → 3 → 4 → 6.

2.8 Project planning

The following table indicates the duration of each activity and the related precedence
relations:

Activities Duration Predecessors

A Weight the ingredients 5 -
B Meld the butter down 3 A
C Mix flour, eggs, and sugar 5 A
D Peel and cut the apples into slices 10 A
E Heaten the oven 20 -
F Add butter to the mixture 8 B,C
G Add apples to the mixture 4 D,F
H Cook the mixture in the oven 40 E,G
I Whip the cream 10 G
L Garnish 5 H,I

We derive the directed graph represeting the precedence relations as follows. For each
activity, we introduce an arc whose cost is equivalent to the duration of the activity (its
two nodes represent the beginning and the end of the activity). For each precedence
relation Ai < Aj , a ”fictitious” arc (i, j) of duration 0 is introduced (dashed line) between
the ending node of the arc associated to Ai and the beginning node of the arc associated
to Aj . We include a node s and, for each activity without predecessors associated to arc
(v, w), we add the arc (s, v) of cost 0. Similarly, we include a node t and, for each activity
without successors associated to arc (v.w), we add the arc (w, t) of cost 0.
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By contracting (deleting) some of the fictitious arcs while paying attention not to create
any unwanted precedence relations, we obtain the following more compact directed acyclic
graph representing the project:
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We use the Critical Path Method (CPM) to determine, for each node v of the graph, the
”at earliest” and ”at latest” times, denoted by Tmin(v) and respectively Tmax(v).

The algorithm exploits the topological order of the nodes and consists of two phases where
Dynamic Programing is applied considering the n nodes in the increasing/decreasing order
of the indices. Here is the pseudocode of the algorithm:

(a) Sort the nodes in topological order;

(b) Tmin(1) = 0;

(c) FOR h = 2, . . . , n DO Tmin(h) := max{Tmin(i) + dih | (i, h) ∈ δ−(h)};

(d) Tmax(n) = Tmin(n);

(e) FOR h = n− 1, . . . , 1 DO Tmax(h) := min{Tmax(i)− dhi | (h, i) ∈ δ+(h)}.

After ordering topologically the nodes, we obtain the following earliest times and latest
times:

1 2 3

4 5 6

7

8 9
[0.0]

A
5

C

5

[5,5]
[10,10]

D
10

E

20

0

0
B

3

[10,10] [18,18]
F
8 4

G
[22,22]

[22,22]

40
H

[62,62]
L

5

[67,67]

I

10

which are summarized in the following table:
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attivity Tmin(i) Tmax(i) slack

A 0 0 0
B 5 7 2
C 5 5 0
D 5 8 3
E 0 2 2
F 10 10 0
G 18 18 0
H 22 22 0
I 22 52 30
L 62 62 0

The slacks for the activities are:

σ(A) = Tmax(2)− Tmin(1)− d12 = 5− 0− 5 = 0

σ(B) = Tmax(4)− Tmin(2)− d24 = 10− 5− 3 = 2

σ(C) = Tmax(3)− Tmin(2)− d23 = 10− 5− 5 = 0

σ(D) = Tmax(5)− Tmin(2)− d25 = 18− 5− 10 = 3

σ(E) = Tmax(6)− Tmin(1)− d16 = 22− 0− 20 = 2

σ(F ) = Tmax(5)− Tmin(4)− d45 = 18− 10− 8 = 0

σ(G) = Tmax(6)− Tmin(5)− d56 = 22− 18− 4 = 0

σ(H) = Tmax(8)− Tmin(7)− d78 = 62− 22− 40 = 0

σ(I) = Tmax(8)− Tmin(6)− d68 = 62− 22− 10 = 30

σ(L) = Tmax(9)− Tmin(8)− d89 = 67− 62− 7 = 0.

The critical activities are A,C, F,G,H,L.

The Gantt chart at earliest (where each activity (i, j) starts at the earliest time Tmin(i)):

0 5 10 15 20 25 30 60 67
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2.9 Shortest paths with negative costs.

We apply Floyd-Warshall’s algorithm.

(a) Initialization
D 1 2 3

1 0 4 3
2 2 0 5
3 -2 -4 0

P 1 2 3

1 1 1 1
2 2 2 2
3 3 3 3

(b) Iteration h = 1 (triangulation on node 1)

d21 + d12 = 2 + 4 = 6 > d22 = 0

d21 + d13 = 2 + 3 = 5 = d23 = 5

d31 + d13 = −2 + 3 = 1 > d33 = 0

d31 + d12 = −2 + 4 = 2 > d32 = −4

D 1 2 3

1 0 4 3
2 2 0 5
3 -2 -4 0

P 1 2 3

1 1 1 1
2 2 2 2
3 3 3 3

(c) Iteration h = 2 (triangulation on node 2)

d12 + d21 = 4 + 2 = 6 > d11 = 0

d12 + d23 = 4 + 5 = 9 > d13 = 3

d32 + d23 = −4 + 5 = 1 > d33 = 0

d32 + d21 = −4 + 2 = −2 = d31 = −2

D 1 2 3

1 0 4 3
2 2 0 5
3 -2 -4 0

P 1 2 3

1 1 1 1
2 2 2 2
3 3 3 3

(d) Iteration h = 3 (triangulation on node 3)

d13 + d31 = 3− 2 = 1 > d11 = 0

d13 + d32 = 3− 4 = −1 < d12 = 4

⇒ update d12, p12

d23 + d32 = 5− 4 = 1 > d22 = 0

d23 + d31 = 5− 2 = 3 > d21 = 2

D 1 2 3

1 0 -1 3
2 2 0 5
3 -2 -4 0

P 1 2 3

1 1 3 1
2 2 2 2
3 3 3 3
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