
ex-2.1-2.4 Foundations of Operations Research Prof. E. Amaldi

2.1 Minimum-cost spanning tree

Find the minimum-cost spanning tree in the graph given in the figure by using Prim’s algorithm,
starting from the node 3.

14

1

2

3

4

5

6 7

8
9

10

11

20

15

9

8

4

10

15

5

7

17

10

9

9

19

16

21

6
4

4

19

7

18

2.2 Kruskal’s algorithm

In 1956 Joseph Kruskal proposed the following greedy algorithm to find a minimum-cost span-
ning tree in an arbitrary connected undirected graph G = (N,E) with a cost ce attached to each
edge e ∈ E.

1) Sort the edges of E as {e1, . . . , em} where ce1 ≤ ce2 ≤ . . . ≤ cem

2) Let i = 1 and initialize the subgraph G′ = (N,F) of G with F = ∅ (G′ consists of n
connected components1 corresponding to the isolated nodes)

3) WHILE |F | < n− 1 DO

IF the two endpoints of the edge ei belong to different connected components of the current
subgraph G′ THEN F := F ∪ {ei} and merge the two connected components

i := i+ 1

END

4) Return the spanning tree G′ = (N,F)

In other words, we order the edges by increasing (non-decreasing) cost, we consider the edges
in that order and, at each step, we select the current edge (which is one of the cheapest edges
still available) only if it does not create a cycle with the previously selected edges. The algorithm
terminates when n− 1 edges have been selected.

1A connected component of an undirected graph is a subgraph in which any two nodes are connected, and

which is connected to no other nodes.

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 1

ex-2.1-2.4 Foundations of Operations Research Prof. E. Amaldi

a) Describe an efficient way to identify/keep track of the connected components of the sub-
graph G′ and to check that a new edge is creating a cycle with the previously selected
edges (is connecting two distinct connected components of G′).

b) Determine the overall computational complexity of this simple implementation of Kruskal’s
algorithm.

c) By invoking the optimality condition for minimum-cost spanning trees, verify that Kruskal’s
algorithm is exact, i.e., is guaranteed to provide an optimal solution for any undirected
graph with costs on the edges.

d) Find the maximum-cost spanning tree in the graph of the previous exercise by using a
straightforward adaptation of Kruskal’s algorithm.

2.3 Optimality check

Without applying any one of Prim’s and Kruskal’s algorithms, verify whether the following
spanning tree is of minimum cost.

1 2

345

8 7

6

2

12

9

4 10

5

12
17

10

11

9

14

11

10

15

2.4 Compact storage of similar sequences

Consider the problem of storing a large set of strings, i.e., sequences of characters from a finite
alphabet. We assume that the strings have many similar entries (they differ only in a small
number of positions) and we wish to store them in a compact way. This problem arises in
several contexts such as when storing DNA sequences, where the characters correspond to the
four DNA bases. In this exercise, we consider the simplified version of the problem with only
two characters.

Given a set of k sequences of M bits, we compute for each pair i, j, with 1 ≤ i, j ≤ k, the
Hamming distance between the sequences i and j, i.e., the number of bits that need to be flipped
in sequence i to obtain sequence j. This function clearly satisfies the three usual properties of
a distance: nonnegativity, symmetry and triangle inequality.

Consider the following set of 6 sequences and the corresponding matrixD = {dij} of Hamming
distances

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 2

ex-2.1-2.4 Foundations of Operations Research Prof. E. Amaldi

1) 011100011101
2) 101101011001
3) 110100111001
4) 101001111101
5) 100100111101
6) 010101011100

1 2 3 4 5 6

1 0 4 4 5 4 3
2 0 4 3 4 5
3 0 5 2 5
4 0 3 6
5 0 5
6 0

where, due to symmetry, only the upper triangle of the matrix is shown.

In order to exploit redundancies between sequences and to save memory, we can store: i) one
of the sequences, called the reference sequence, completely and ii) for every other sequence, only
the set of bit flips that allow us to retrieve it either directly from the reference sequence or from
another sequence.

Show how the problem of deciding which differences to memorize, so as to minimize the
total number of bits used for storage, can be reduced to the problem of finding a minimum-cost
spanning tree in an appropriate graph. Solve the problem for the given instance.

[Hint: Given any two sequences (the i-th one and j-th one), how many bits are needed to store
the positions in which they differ?]

Document prepared by L. Liberti, S. Bosio, S. Coniglio. Translation to English by S. Coniglio 3

