
Foundations of Operations Research
Practice exercises: Linear Programming

M. Ciavotta

revised version by O. Jabali

2018/2019

1



Practice exercise set Linear Programming

Exercise 1

Solve the following linear problem graphically:

max 2x1 + x2
s.t. 2x1 + x2 ≤ 10

x1 ≤ 4
x2 ≤ 5
x1, x2 ≥ 0.

Solution
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Figure 1: Polyhedron of the feasible solutions

The red lines correspond to the level curves of the objective function for z = 8
and z = 10. The blue arrow represents the gradient of the objective function. All
the points laying in the segment (A,B) represent solution with value 10, and are
optimal solutions. However, only xA = (2.5, 5) and xB = (4, 2) are vertices, so
there are two optimal basic solutions and an infinite number of non-basic optimal
solutions.
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Exercise 2

Solve the following linear problem graphically:

min −x1 − x2
s.t.

−3x1 + 2x2 ≥ 6
3x1 + x2 ≥ 9
x1, x2 ≥ 0.

Solution
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Figure 2: Polyhedron of the feasible solutions

The red lines correspond to the level curves of the objective function for z = 8
and z = −19

3
. The blue arrow represents gradient of the objective function. The

objective function can decrease indefinitely, thus the problem is unbounded.
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Exercise 3

Determine using the Simplex algorithm with Bland’s rule the optimal solution to
the following linear programming problem:

max x1 + 3x2 + 5x3 + 2x4
s.t. x1 + 2x2 + 3x3 + x4 ≤ 3

2x1 + x2 + x3 + 2x4 ≤ 4
x1, x2, x3, x4 ∈ R+.

Solution

The problem in standard form is:

min −x1 − 3x2 − 5x3 − 2x4
s.t. x1 + 2x2 + 3x3 + x4 + s1 = 3

2x1 + x2 + x3 + 2x4 + s2 = 4

The initial tableau is

x1 x2 x3 x4 s1 s2
0 -1 -3 -5 -2 0 0

s1 3 1 2 3 1 1 0
s2 4 2 1 1 2 0 1

Iteration 1: Using Bland’s rule x1 enters the basis. θ = min{3
1
, 4
2
} = 2, thus s2

exists the basis. The next tableau is

x1 x2 x3 x4 s1 s2
2 0 -2.5 -4.5 -1 0 0.5

s1 1 0 1.5 2.5 0 1 -0.5
x1 2 1 0.5 0.5 1 0 0.5

Iteration 2: Using Bland’s rule x2 enters the basis. θ = min{ 1
1.5
, 2
0.5
} = 0.67,

thus s1 exists the basis. The next tableau is

x1 x2 x3 x4 s1 s2
3.67 0 0 -0.33 -1 1.67 -0.33

x2 0.67 0 1 1.67 0 0.67 -0.33
x1 1.67 1 0 -0.33 1 -0.33 0.67

Iteration 3: Using Bland’s rule x3 enters the basis. θ = min{0.67
1.67
} = 0.4, thus

x2 exists the basis. The next tableau is

x1 x2 x3 x4 s1 s2
3.8 0 0.2 0 -1 1.8 -0.4

x3 0.4 0 0.6 1 0 0.4 -0.2
x1 1.8 1 0.2 0 1 -0.2 0.6
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Iteration 4: Using Bland’s rule x4 enters the basis. θ = min{1.8
1
} = 1.8, thus x1

exists the basis. The next tableau is

x1 x2 x3 x4 s1 s2
5.6 1 0.4 0 0 1.6 0.2

x3 0.4 0 0.6 1 0 0.4 -0.2
x4 1.8 1 0.2 0 1 -0.2 0.6

All the reduced costs are nonnegative, then the optimal solution to the problem
is the basis (x1, x4) with values:

xB =

[
0.4
1.8

]
The value associated with the optimal solution is 5.6 (the original problem is a
maximization one).

Exercise 4

Determine using the Simplex algorithm with Bland’s rule the optimal solution to
the following linear programming problem:

min −5x1 − 2x2 − 3x3 − x4
s.t. x1 − 2x2 + 2x3 + 2x4 ≤ 4

−x1 + x2 + x3 − x4 ≤ 6
xi ≥ 0.

Solution

The problem in standard form is:

min −5x1 − 2x2 − 3x3 − x4
s.t. x1 − 2x2 + 2x3 + 2x4 + s1 = 4

−x1 + x2 + x3 − x4 + s2 = 6
xi, si ≥ 0.

The initial tableau is

x1 x2 x3 x4 s1 s2
0 -5 -2 -3 -1 0 0

s1 4 1 -2 2 2 1 0
s2 6 -1 1 1 -1 0 1

Iteration 1: Using Bland’s rule x1 enters the basis. θ = min{4
1
} = 4, thus s1

exists the basis. The next tableau is
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x1 x2 x3 x4 s1 s2
20 0 -12 7 9 5 0

x1 4 1 -2 2 2 1 0
s2 10 0 -1 3 1 1 1

Iteration 2: The only candidate variable to enter the basis is x2. However,
Since all the elements ā[i, s] are negative (i.e., -2,-1), the considered problem is
unbounded (z = −∞).

Exercise 5

Solve the following linear programming problem using the Simplex algorithm
with Bland’s rule:

min 3x1 + x2 + x3
s.t. 2x1 + x2 + x3 = 6

x1 + x2 + 2x3 = 2
x1, x2, x3 ≥ 0.

Solution

We will execute the two-phase simplex method. In phase one we try to find a
basic feasible expressed in canonical form. The auxiliary problem is:

min w1 + w2

s.t. 2x1 + x2 + x3 + w1 = 6
x1 + x2 + 2x3 + w2 = 2
x1, x2, x3, w1, w2 ≥ 0.

We express the objective function in terms of the nonbasic variables.

w1 = 6− 2x1 − x2 − x3

w2 = 2− x1 − x2 − 2x3

Therefore,
w1 + w2 = 8− 3x1 − 2x2 − 3x3.

x1 x2 x3 w1 w2

-8 -3 -2 -3 0 0
w1 6 2 1 1 1 0
w2 2 1 1 2 0 1

Iteration 1: Using Bland’s rule x1 enters the basis. θ = min{6
2
, 2
1
} = 2, thus w2

exists the basis. The next tableau is
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x1 x2 x3 w1 w2

-2 0 1 3 0 3
w1 2 0 -1 -3 1 -2
x1 2 1 1 2 0 1

The reduced cost are all nonnegative. The optimal solution is [w1, x1] = [2, 2] is
with an objective function value of 2. Since the objective function value of the
first stage is strictly positive (and not zero) the original problem is infeasible.

Exercise 6

Consider the following linear programming problem:

max 2x1 + x2

−2x1 − x2 ≤ −1

x1 − x2 ≤ 3

4x1 + x2 ≤ 17

x2 ≤ 5

−x1 + x2 ≤ 4

where x1, x2 ≥ 0.

a) Write the dual problem of the given problem.

b) Write the equations defining the complementarity slackness for the given
problem (Notice that the problem and its dual are in symmetric form).

c) Exploiting the complementarity conditions say whether points (3,5) and
(4,1) are optimal.

Solution

Part a)

min −y1 + 3y2 + 17y3 + 5y4 + 4y5

−2y1 + y2 + 4y3 − y5 ≥ 2

−y1 − y2 + y3 + y4 + y5 ≥ 1

y1, y2, y3, y4, y5 ≥ 0
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Part b)
The equations of complementary slackness are:

(−2x1 − x2 + 1)y1 = 0

(x1 − x2 − 3)y2 = 0

(4x1 + x2 − 17)y3 = 0

(x2 − 5)y4 = 0

(−x1 + x2 − 4)y5 = 0

(−2y1 + y2 + 4y3 − y5 − 2)x1 = 0

(−y1 − y2 + y3 + y4 + y5 − 1)x2 = 0

Part c)
Point (3,5) is feasible for the primal problem. By using the equations of comple-
mentary slackness we have that:

(−2x1 − x2 + 1)y1 = 0⇒ y1 = 0

(x1 − x2 − 3)y2 = 0⇒ y2 = 0

(−x1 + x2 − 4)y5 = 0⇒ y5 = 0

x1 > 0⇒ 4y3 = 2

x2 > 0⇒ y3 + y4 = 1

We get that y3 =
1

2
, y4 =

1

2
, which is a feasible solution to the dual problem and

thus (3,5) is optimal.

Point (4,1) is feasible for the primal problem. By using the equations of comple-
mentary slackness we have that:

(−2x1 − x2 + 1)y1 = 0⇒ y1 = 0

(x2 − 5)y4 = 0⇒ y4 = 0

(−x1 + x2 − 4)y5 = 0⇒ y5 = 0

x1 > 0⇒ y2 + 4y3 = 2

x2 > 0⇒ −y2 + y3 = 1

We get that y2 = −2
5
, y3 = 3

5
, which is not a feasible solution to the dual problem

and thus (4,1) is not optimal.
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Exercise 7

Consider the following problem:

max z = 9x1 + 8x2

x1 − 2x2 ≤ −1

4x1 + 3x2 ≤ 4

−x1 + 2x2 ≤ 3

2x1 − x2 ≤ −4

Verify if solution x1 = −3, x2 = −1 is optimal. Verify if solution x1 = −5
3
, x2 = 2

3

is optimal.

Solution

The dual problem is:

min zD = −y1 + 4y2 + 3y3 − 4y4

y1 + 4y2 − y3 + 2y4 = 9

−2y1 + 3y2 + 2y3 − y4 = 8

yi ≥ 0 ∀i

The equations of complementary slackness are:

(x1 − 2x2 + 1)y1 = 0

(4x1 + 3x2 − 4)y2 = 0

(−x1 + 2x2 − 3)y3 = 0

(2x1 − x2 + 4)y4 = 0

(y1 + 4y2 − y3 + 2y4 − 9)x1 = 0

(−2y1 + 3y2 + 2y3 − y4 − 8)x2 = 0

Point (-3,-1) is feasible for the primal problem (z = −35). By using the equations
of complementary slackness we infer that the dual variable y2 , y3 and y4 are equal
to 0. Therefore,

y1 = 9

−2y1 = 8
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This system has no feasible solution. Therefore the solution x1 = −3, x2 = −1 is
not optimal.

Point (−5
3
, 2
3
) is feasible for the primal problem (z = −29

3
). By using the equations

of complementary slackness we infer that the dual variable y1 and y2 are equal
to 0.
Considering values x1 = −5

3
, x2 = 2

3
(z = −29

3
), constraints (3) and (4) hold with

equality. Dual variable y1 and y2 are equal to 0 for the condition of complementary
slackness. Therefore,

−y3 + 2y4 = 9

+2y3 − y4 = 8

We get that y3 =
25

3
, y4 =

26

3
, which is a feasible solution to the dual problem

and thus (−5
3
, 2

3
) is optimal.

Exercise 8

Consider the following Linear Programming problem:

min−x1 + 2x2 (1)

−x1 + x2 ≤ 2 (2)

x1 + x3 = 3 (3)

2x1 + x2 ≥ 1 (4)

2x1 − 6x2 ≤ 15 (5)

x1, x3 ≥ 0, x2 free (6)

Without applying any problem transformation, write the dual problem and the
complementary slackness conditions (for both problems).

Consider two solutions x1 =
[
3,−3

2
, 0
]

and x2 =
[
3
2
,−2, 3

2

]
. Determine the dual

complementary solutions and discuss the optimality of both primal solutions.
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Solution

max 2y1 + 3y2 + y3 + 15y4

−y1 + y2 + 2y3 + 2y4 ≤ −1

y1 + y3 − 6y4 = 2

y2 ≤ 0

y1, y4 ≤ 0

y2 free

y3 ≥ 0

Note that y2 ≤ 0 dominates the constraint that y2 is free. Therefore, the con-
straint that y2 is free is not necessary.
The complementary slackness conditions are the following:

(−x1 + x2 − 2)y1 = 0

(x1 + x3 − 3)y2 = 0

(2x1 + x2 − 1)y3 = 0

(2x1 − 6x2 − 15)y4 = 0

(−y1 + y2 + 2y3 + 2y4 + 1)x1 = 0

(y1 + y3 − 6y4 − 2)x2 = 0

y2x3 = 0

Point x1 =
[
3,−3

2
, 0
]

is feasible for the primal problem (z = −6). By using the
equations of complementary slackness we infer that:

• Constraint 1: −(3) + (−3
2
)− 2 = −13

2
=⇒ y1 = 0

• Constraint 2: (3− 3) = 0

• Constraint 3: (2 · 3− 3
2
− 1) = 7

2
=⇒ y3 = 0

• Constraint 4: (2 · 3 + 6 · 3
2
− 15) = 0.

Dual variable y1 and y3 are equal to 0 due to the condition of complementary
slackness. Therefore,

y2 + 2y4 = −1

−6y4 = 2

We get y2 = −1
3
, y4 = −1

3
, which is a feasible solution to the dual problem and

thus x1 =
[
3,−3

2
, 0
]

is optimal.
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Point x2 =
[
3
2
,−2, 3

2

]
is feasible for the primal problem (z = −11

2
). By using the

equations of complementary slackness we infer that:

• Constraint 1: −(3
2
) + (−2)− 2 = −11

2
=⇒ y1 = 0

• Constraint 2: (3
2

+ 3
2
− 3) = 0

• Constraint 3: (2 · 3
2
− 2− 1) = 0

• Constraint 4: (2 · 3
2

+ 6 · 2− 15) = 0.

x3 > 0 and y2x3 = 0, therefore y2 = 0. The system of dual constraints can be
rewritten as:

2y3 + 2y4 = −1

y3 − 6y4 = 2

The solution to the above system yields y4 = − 5
14
y3 = −1

7
, which is not feasible

for the dual problem (y3 ≥ 0), therefore the considered solution is not optimal.

Exercise 9

Consider the following Linear Programming problem:

min−2x1 + 2x2 − 2x3

2x1 − 2x2 − x3 ≤ 2

−3x1 + 3x2 + 2x3 ≤ 3

x1, x2, x3 ≥ 0

• Write the dual problem.

• Solve the primal problem using the Simplex method with Bland’s rule.

Solution

The dual problem is:

max 2y1 + 3y2

2y1 − 3y2 ≤ −2

−2y1 + 3y2 ≤ 2

−y1 + 2y2 ≤ −2

y1 ≤ 0

y2 ≤ 0
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The problem in standard form is:

min−2x1 + 2x2 − 2x3

2x1 − 2x2 − x3 + s1 = 2

−3x1 + 3x2 + 2x3 + s2 = 3

x1, x2, x3, s1, s2 ≥ 0

The initial tableau is

x1 x2 x3 s1 22

0 -2 2 -2 0 0
s1 2 2 -2 -1 1 0
s2 3 -3 3 2 0 1

Iteration 1: Using Bland’s rule x1 enters the basis. θ = min{2
2
} = 1, thus s1

exists the basis. The next tableau is

x1 x2 x3 s1 22

2 0 0 -3 1 0
x1 1 1 -1 -0.5 0.5 0
s2 6 0 0 0.5 1.5 1

Iteration 2: x3 enters the basis. θ = min{ 6
0.5
} = 12, thus s2 exists the basis.

The next tableau is

x1 x2 x3 s1 22

38 0 0 0 10 6
x1 7 1 -1 0 2 1
x3 12 0 0 1 3 2

All the reduced costs are nonnegative, then the optimal solution to the problem
is the basis (x1, x3) with values:

xB =

[
7
12

]
The value associated with the optimal solution is -38.
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